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IgA nephropathy (IgAN) is the most common primary glomerulonephritis, frequently 
leading to end-stage renal disease, as there is no disease-specific therapy. IgAN is diag-
nosed from pathological assessment of a renal biopsy specimen based on predominant 
or codominant IgA-containing immunodeposits, usually with complement C3 co-depos-
its and with variable presence of IgG and/or IgM. The IgA in these renal deposits is 
galactose-deficient IgA1, with less than a full complement of galactose residues on the 
O-glycans in the hinge region of the heavy chains. Research from the past decade led to 
the definition of IgAN as an autoimmune disease with a multi-hit pathogenetic process 
with contributing genetic and environmental components. In this process, circulating 
galactose-deficient IgA1 (autoantigen) is bound by antiglycan IgG or IgA (autoantibodies) 
to form immune complexes. Some of these circulating complexes deposit in glomeruli, 
and thereby activate mesangial cells and induce renal injury through cellular proliferation 
and overproduction of extracellular matrix components and cytokines/chemokines. 
Glycosylation pathways associated with production of the autoantigen and the unique 
characteristics of the corresponding autoantibodies in patients with IgAN have been 
uncovered. Complement likely plays a significant role in the formation and the nephri-
togenic activities of these complexes. Complement activation is mediated through the 
alternative and lectin pathways and probably occurs systemically on IgA1-containing 
circulating immune complexes as well as locally in glomeruli. Incidence of IgAN varies 
greatly by geographical location; the disease is rare in central Africa but accounts for up 
to 40% of native-kidney biopsies in eastern Asia. Some of this variation may be explained 
by genetically determined influences on the pathogenesis of the disease. Genome-wide 
association studies to date have identified several loci associated with IgAN. Some of 
these loci are associated with the increased prevalence of IgAN, whereas others, such 
as deletion of complement factor H-related genes 1 and 3, are protective against the 
disease. Understanding the molecular mechanisms and genetic and biochemical factors 
involved in formation and activities of pathogenic IgA1-containing immune complexes 
will enable the development of future disease-specific therapies as well as identification 
of non-invasive disease-specific biomarkers.
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FiGURe 1 | examples of immunofluorescence-, light-, and electron-microscopy features of renal biopsy specimens from patients with igAN.  
(A) Immunofluorescence staining for IgA in a kidney biopsy specimen from a patient with IgAN showing mesangial staining. (B) Periodic acid–Schiff staining of a 
kidney biopsy specimen from a patient with IgAN. Arrows indicate mesangial expansion and hypercellularity. (C) Electron micrograph of kidney biopsy specimen 
from a patient with IgAN. Arrows point to examples of electron-dense material representative of mesangial and paramesangial immune complex deposits. Images 
are courtesy of Dr. Huma Fatima (B,C) and Dr. Lea Novak (A), Department of Pathology, UAB.
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iNTRODUCTiON

Diagnosis of igA Nephropathy
IgA nephropathy (IgAN) is currently recognized as the most com-
mon primary glomerulonephritis in the world and is a frequent 
cause of end-stage renal disease. The diagnosis is established by 
immunofluorescence examination of cortical renal tissue that 
shows IgA as the dominant or codominant immunoglobulin in 
glomeruli (Figure 1A) (1, 2). Complement protein C3 is frequently 
present, often accompanied by IgG, IgM, or both. Confocal micros-
copy shows colocalization of these proteins, consistent with the 
presence of immune complexes. Light microscopy findings usu-
ally include mesangial hypercellularity and increased mesangial 
matrix (Figure 1B). Electron microscopy shows electron-dense 
deposits consistent with immune complexes in the mesangial and 
paramesangial areas (Figure 1C), occasionally with subepithelial 
or subendothelial deposits. In 2009, the Oxford classification 
of IgAN was published. This classification was put forth by an 
international group of nephrologists and renal pathologists to 
standardize pathologic findings and ascertain those that predict 
disease progression. Ultimately, four pathologic features were 
identified as being of prognostic value, independent of clinical 
data: mesangial hypercellularity, segmental glomerulosclerosis, 
endocapillary hypercellularity, and tubular atrophy/interstitial 
fibrosis. This classification allows the pathologist to give a score 
for each of these features that correlates to clinical outcome. 
Most cases used to develop the Oxford classification did not have 
significant crescents or necrosis, and therefore, neither of these 
findings was included in the assessment (3, 4).

Clinical Presentation and Pathology of 
igA-Related Nephritis
Primary IgA Nephropathy
IgA nephropathy may affect children as young as 4 years of age. 
The most common clinical presentation in children is visible 
hematuria accompanying a febrile illness, frequently an infection 
of the upper respiratory tract. Among adults, visible hematuria 

is much less common (extremely rare beyond age 40 years), and 
typical manifestations include microscopic hematuria, proteinu-
ria, hypertension, and variable degrees of chronic kidney disease 
(5, 6). The gender distribution differs geographically, with a 2–3:1 
male-to-female ratio in North America compared with a 1:1 ratio 
in Asia (6). About 5–8% of patients have a first- or second-degree 
relative with biopsy-proven IgAN or urinary abnormalities, sug-
gesting that genetic factors influence the expression of disease. 
The prevalence of disease varies greatly between different regions 
of the world. East Asia has the highest rates, whereas the disease 
is rare in central Africa (7). A recent genome-wide associa-
tion study (GWAS) found that the frequency of risk alleles in 
regional populations correlated with disease prevalence (8). The 
true prevalence of IgAN is impossible to establish because the 
diagnosis currently requires a kidney biopsy and criteria for 
undertaking the invasive procedure vary widely. Furthermore, 
IgAN is frequently subclinical, as evidenced by a study in 
Finland that found IgAN in 1.3% of autopsies of persons who 
had committed suicide or died violently (9) and a Japanese study 
in which biopsies of renal allografts at implantation showed 
IgAN in 1.6% of cases (10). Although clinical series published 
shortly after the discovery of IgAN in 1968 indicated generally a 
benign clinical course, later reports with longer observation have 
documented progression to end-stage renal disease in 14–39% 
of patients by 20 years after diagnosis (5). On the one hand, for 
those who undergo renal transplantation, the disease recurs in 
about 50% of allografts by 10 years after engraftment (11). On 
the other hand, the IgA immune deposits clear within several 
weeks from allografts with subclinical disease at the time of  
transplantation (12).

Henoch–Schönlein Purpura with Nephritis
Henoch–Schönlein purpura (HSP) is the most common vasculi-
tis in childhood with an incidence of 6–24 per 100,000 children 
per year (13, 14). Extrarenal involvement includes skin (palpable 
purpura), gastrointestinal tract (abdominal pain and bloody diar-
rhea), and musculoskeletal system (arthritis and arthralgia) (15). 
Renal disease affects a minority of HSP patients and typically 
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FiGURe 2 | Hinge-region glycosylation of human igA1 and 
comparison of amino-acid sequences of human igA1 and igA2. 
Human IgA1 has nine Ser (S) and Thr (T) amino-acid residues in the 
hinge-region segment (between constant regions C1 and C2 of the heavy 
chains). Usually, three to six clustered O-glycans are attached per hinge 
region. IgA2 hinge region is shorter compared to that of IgA1, does not have 
Ser and Thr residues and, thus, IgA2 does not have O-glycans. Moreover, 
each IgA1 heavy chain has two N-glycans, one in the C2 domain and the 
second in the tailpiece portion of the C3 domain.
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manifests as hematuria and proteinuria about 6 weeks after the 
appearance of purpura. Histological features of HSP with nephri-
tis are pathologically indistinguishable from those of IgAN, 
suggesting that the two entities share mechanisms of disease (16, 
17). While most children with HSP with nephritis resolve their 
urinary abnormalities, some develop long-term kidney dysfunc-
tion and may progress to end-stage renal disease. HSP is relatively 
uncommon in adults, but the prognosis of HSP with nephritis is 
worse with increasing age. Patients with HSP with nephritis were 
excluded from the Oxford classification, so the prognostic value 
of their histopathologic findings has not been established (18).

Secondary IgA Nephropathy
IgA-dominant immune complex glomerulonephritis has also 
been described in patients with a variety of systemic diseases and 
is thought to be a secondary manifestation. The pathogenesis 
behind these associations has not been elucidated, but several 
theories have been proposed (19). In patients with cirrhosis 
due to alcohol abuse or chronic infection with hepatitis C virus, 
glomerular IgA is thought to result from decreased clearance 
of the immunoglobulin by hepatocytes (20, 21). Patients with 
inflammatory bowel disease or celiac disease may be exposed to 
increased loads and variety of antigens due to impaired integrity 
of the gastrointestinal mucosa, inciting increased synthesis of IgA 
as well as abnormalities of the IgA immune system (20). Finally, 
chronic infections, such as those caused by staphylococci, may 
increase production of pathogenic IgA (20).

CiRCULATiNG igA-CONTAiNiNG iMMUNe 
COMPLeXeS iN igA NePHROPATHY AND 
HeNOCH–SCHÖNLeiN PURPURA 
NePHRiTiS

Considerable evidence has suggested that mesangial immuno-
deposits in IgAN are derived from IgA-containing circulating 
immune complexes: (1) disease recurs in about 50% of IgAN 
patients after kidney transplantation (22–26); (2) immune deposits 
clear within weeks in kidney from a person with subclinical IgAN 
after transplantation into a patient with non-IgAN renal disease 
(12); (3) blood levels of IgA and IgA-containing immune com-
plexes are elevated in many patients with IgAN (25, 27–32); and 
(4) circulating complexes and mesangial deposits share idiotypic 
determinants (33), although a disease-specific idiotype has not 
been identified (34). Thus, circulating immune complexes likely 
play a key role in IgAN, and kidneys are “innocent bystanders.”

The apparent key role of IgA-containing immune complexes in 
IgAN and HSP with nephritis has been supported by data from 
several other studies. Circulating immune complexes with IgA 
and C3 are elevated in approximately one half of patients with 
IgAN (28). Moreover, serum levels of IgA-containing immune 
complexes in patients with IgAN correlate to clinical and histo-
logical activity, such as magnitude of microscopic hematuria and 
percentage of glomeruli with florid crescents (27, 35). In IgAN, 
hematuria is typical and often includes episodes of macroscopic 
bleeding that coincide with mucosal infections, including those 
of the upper respiratory tract and digestive system. These and 

other observations, and the fact that IgA in immunodeposits 
is polymeric, have indicated potential involvement of mucosal 
system [for review, see Ref. (36)].

Circulating immune complexes containing IgA are present 
in serum of healthy individuals and patients with diseases other 
than IgAN. Although immune complexes in such subjects may 
form, for example, due to binding of IgA antibodies to food or 
microbial antigens, it was shown for patients with IgAN that the 
microbial and food antigens are not substantial components of 
IgA-containing glomerular immunodeposits (37).

igA1 STRUCTURe, PRODUCTiON, AND 
MeTABOLiSM

Structure and Glycosylation of igA1 and 
Pathogenesis of igA Nephropathy
Humans have two IgA subclasses, IgA1 and IgA2. IgA1 contains 
O-glycans attached to Ser or Thr, usually three to six, in the hinge 
region (HR) of the heavy chains (Figure 2). IgA1 HR has nine 
Ser and Thr amino-acid residues; those are missing in IgA2 HR 
and, thus, IgA2 does not have O-glycans (Figure 2). In normal 
human serum IgA1, HR glycoforms with four and five glycans are 
the most common [for review, see Ref. (38)]. Each heavy chain 
of IgA1 also contains two N-glycans, one in the CH2 domain 
(Asn263) and the second in the tailpiece portion (Asn459) 
(39, 40). Normal human circulatory IgA1 usually has core 1 
O-glycans consisting of N-acetylgalactosamine (GalNAc) with 
β1,3-linked galactose. One or both saccharides can be sialylated, 
galactose with α2,3-linked and GalNAc with α2,6-linked sialic 
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FiGURe 3 | Pathways of O-glycosylation of igA1 hinge region, 
including galactose-deficient and galactosylated O-glycans. Left 
panel: O-glycosylation of IgA1 hinge region occurs in the Golgi apparatus and 
begins with attachment of N-acetylgalactosamine (GalNAc) to Ser or Thr by 
an enzyme of UDP-GalNAc:polypeptide GalNAc-transferases family 
(GalNAc-Ts). In patients with IgAN, some terminal GalNAc residues may be 
prematurely sialylated by GalNAc α2,6-sialyltransferase (ST6GalNAc) (red 
arrow); this step prevents addition of galactose (the glycan thus remains 
galactose-deficient). In healthy individuals, GalNAc-α-Ser/Thr residue can be 
normally modified by addition of galactose, catalyzed by UDP-galactose: 
GalNAc-α-Ser/Thr β1,3-galactosyltransferase (C1GalT1); stability of C1GalT1 
requires molecular chaperone Cosmc. Galβ1,3-GalNAc structures may be 
further modified by addition of sialic acid to galactose residues through the 
activity of Galβ1,3-GalNAc α2,3-sialyltransferase (ST3Gal) and/or to GalNAc 
residues through the activity of ST6GalNAc. Right panel: galactose-deficient 
O-glycans consist of terminal GalNAc, also known as Tn antigen, or GalNAc 
with α2,6-linked sialic acid, also known as STn antigen. Galactosylated 
O-glycans are disaccharides consisting of galactose and GalNAc (Galβ1,3-
GalNAcα1-O-Ser/Thr, also known as T antigen) and may be modified by sialic 
acid (also known as ST antigen). T antigen does not carry sialic acid, but ST 
antigen has sialic acid attached to galactose and/or GalNAc.
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acid (Figure 3, right panel). The composition of the O-glycans 
on normal serum IgA1 is variable; prevailing forms include the 
GalNAc-galactose disaccharide and its mono- and di-sialylated 
forms (41–44). Normal serum IgA1 had been thought to contain 
little or no galactose-deficient O-glycans (44), but it is now con-
sidered that some terminal or sialylated GalNAc is likely present 
even in healthy individuals (45).

Analysis of IgA in patients with IgAN revealed that abnormal 
O-glycosylation is a key step directing IgA1 immune complex 
formation and glomerular deposition (31, 46–52). The accumu-
lated data suggest that circulating complexes in patients with 
IgAN contain galactose-deficient IgA1 (Gd-IgA1) (31, 49, 50, 
53) and that the IgA in the mesangial deposits is exclusively of 
IgA1 subclass (54) and is enriched for Gd-IgA1 glycoforms (55, 
56). Further insight about a relationship between Gd-IgA1 and 
nephritis has come from other observations: (1) Gd-IgA1 (57) 

and IgA–IgG circulating immune complexes (58) are in sera of 
patients with HSP with nephritis but not in sera of patients with 
HSP without nephritis and (2) patients with IgA1 myeloma have 
high circulating levels of IgA1, but only those with aberrantly 
glycosylated IgA1 develop immune complex glomerulonephritis 
(59, 60).

Human serum IgA, predominantly IgA1 with a small contribu-
tion of IgA2, is >90% in monomeric form and <10% in polymeric 
form, and a small fraction is bound in circulating immune com-
plexes (61). Serum IgA1 is rapidly catabolized by hepatocytes (see 
below for more details) and thus has a short half-life (~5 days) 
(62). Hepatocytes express asialoglycoprotein receptor (ASGP-R) 
(63, 64) that binds IgA1 and other glycoproteins through terminal 
galactose or GalNAc residues (63–65). Gd-IgA1 remains in the cir-
culation for a prolonged period of time (66). Galactose deficiency 
in itself should not hinder catabolism of IgA1 molecules because 
ASGP-R can recognize terminal GalNAc (65). However, if sialic 
acid is linked to GalNAc or IgA1 is bound by an antibody, then 
such IgA1 cannot be recognized by the receptor (53, 67). Serum 
Gd-IgA1 is bound primarily within immune complexes (31, 49). 
The large size of these complexes likely precludes entry into the 
space of Disse through relatively small endothelial fenestrae (68), 
hence preventing their hepatic clearance from the circulation 
(69–71). Immune complexes then deposit in the mesangium 
after passing through larger fenestrae in glomerular capillaries 
(36, 72–74). This postulate is consistent with observations that, in 
animals, large-molecular-mass immune complexes induce more 
severe glomerular lesions than do small complexes (75).

Approaches for Analysis of igA1 Aberrant 
O-Glycosylation
Initial Approaches
Abnormality of IgA1 O-glycans in patients with IgAN was first 
indicated by an observation of reduced reactivities of IgA1 
with jacalin, a lectin-binding galactose-GalNAc disaccharide 
(46). Based on additional research, defective galactosylation of 
O-glycans of IgA1 molecules was proposed as an etiopathogenic 
factor in IgAN (47). Various lectin-binding assays were used to 
examine the presence of terminal galactose on N-glycans of puri-
fied serum IgG and IgA1 and O-glycans of IgA1 and C1 inhibitor 
(76). Serum IgA1 of patients with IgAN vs. controls had less galac-
tose on GalNAc, whereas the glycosylation of C1 inhibitor did not 
exhibit this difference in glycosylation. Another study compared 
O-glycosylation of serum IgA1 and IgD, a second immunoglobu-
lin with O-glycans, in patients with IgAN and healthy controls 
and found aberrant O-glycosylation only on IgA1 from patients 
with IgAN (77). Together, these data suggested that patients with 
IgAN had galactose-deficient O-glycans uniquely on circula-
tory IgA1 (78). These findings were confirmed using a panel of 
lectins, including that from Helix aspersa, specific for terminal 
GalNAc (31). Moreover, Gd-IgA1 was present in complexes with 
IgG, leading to speculation that formation of these complexes 
may reduce the rate of elimination of immune complex-bound 
IgA1 and lead to elevated serum levels of Gd-IgA1 (31, 79). 
These findings explained why serum levels of IgA1-containing 
immune complexes of patients with IgAN and HSP with nephritis 
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are higher than those in healthy controls and, furthermore, why 
IgA1-containing immune complexes frequently contain also IgG 
(27, 31).

Additional assessments of IgA1 O-glycans used different 
analytical approaches, including lectins recognizing different 
O-glycans on intact IgA1 molecules, monosaccharide com-
positional analysis by gas–liquid chromatography (LC), mass 
spectrometric analysis of isolated O-glycosylated hinge-region 
glycopeptides, Edman sequencing, and separation and identifi-
cation of free O-glycans released from IgA1 (31, 36, 41–44, 47, 
70, 78, 80–96). Each technique presented advantages and dis-
advantages. For example, lectin ELISA allows high-throughput 
analyses in a quantitative manner (89, 90, 94) but does not 
provide information on sites of attachment and heterogeneity 
in the HR, whereas the more cumbersome methods of mass 
spectrometry will provide molecular-level details.

Mass Spectrometry
By the mid-1990s, mass spectrometry became the standard 
tool for analysis of IgA1 O-glycosylation, revealing variably 
O-glycosylated HR glycoforms. Two IgA1 HR glycopeptides con-
taining four or five O-glycan chains were identified by MALDI-
TOF mass spectrometry (97). Later analyses used normal serum 
IgA1 O-glycopeptides (98, 99), pooled serum of patients with 
IgAN (100), IgA1 isolated from pooled renal biopsies (56), and 
tonsillar IgA1 (101). Mass spectrometric analysis showed differ-
ences in HR O-glycopeptides of IgA1 from patients with IgAN 
vs. healthy controls (usually serum IgA1), consistent with less 
galactosylation in patients with IgAN (56, 100, 101). IgA-specific 
proteases that released IgA1 HR fragments of different lengths 
provided new tools for generating IgA1 HR O-glycopeptides for 
analysis (84). A method for direct localization of sites of O-glycan 
attachment in IgA1 myeloma protein was developed by the use of 
electron capture dissociation (ECD) tandem mass spectrometry 
(MS/MS) (102). For the first time, individual sites of O-glycan 
attachment were directly identified for individual IgA1 HR gly-
coforms. These data confirmed Thr225, Thr228, Ser230, Ser232, 
and Thr236 as sites of glycan attachment in a single IgA1 HR 
O-glycoform with five O-glycans and Thr225, Thr228, Ser230, and 
Ser232 as the sites of glycan attachment in two HR O-glycoforms 
with four O-glycans (102). The ability to localize all sites of gly-
cosylation in a single IgA1 HR species expanded the possibilities 
of defining the heterogeneity and aberrant glycosylation of IgA1 
from patients with IgAN.

Renfrow et al. pursued the O-glycan analysis of three distinct 
IgA1 myeloma proteins using reversed-phase LC separation 
of IgA1 O-glycopeptides and ECD fragmentation of a larger 
IgA1 HR tryptic fragment and the second fragment released by 
IgA-specific proteases (103), demonstrating the utility of high-
resolution mass spectrometry. In 2010, they reported the com-
plete localization of all sites of O-glycosylation in the six most 
abundant IgA1 O-glycoforms of an IgA1 myeloma protein (104). 
Three distinct IgA1 HR proteolytic fragments were analyzed, 
and the pattern of glycopeptides for each proteolytic fragment 
was assigned a relative distribution based on a label-free rela-
tive quantitative method developed for N-glycopeptides (105). 
Specific sites of galactose deficiency have been expressed as a 

percentage of the total distribution of all observed O-glycoforms. 
ECD and a newer ECD-type fragmentation method, electron 
transfer dissociation (ETD), were used to localize sites of 
O-glycan attachment with LC–MS/MS (103, 106). In 2012, 
a new type of heterogeneity was identified, representing IgA1 
O-glycopeptide isomers, i.e., equally O-glycosylated IgA1 HRs 
with different sites of attachment (45), involving Ser230, Thr233, 
and Thr236 sites. With these 2010 and 2012 studies, the sites 
of attachment indicated a semi-ordered synthesis of the clus-
tered IgA1 O-glycans and not a series of random attachments. 
Hopefully, these approaches will elucidate the structural basis 
of abnormal O-glycosylation of IgA1 in IgAN and provide clues 
as to whether specific isomers are associated with the clinical 
expression or course of the disease.

igA Molecular Forms and igA Production 
and Catabolism
IgA Subclasses
Molecules of monomeric IgA contain two α1 or two α2 chains, 
linked by inter α-chain disulfide bridges and two κ or two λ 
chains. A distinguishing feature of polymeric IgA, irrespective of 
its dimeric or tetrameric form, is the presence of a single mol-
ecule of joining (J) chain incorporated into polymeric IgA within 
IgA-producing cells (107). The role of J chain in the process of 
polymerization of IgA remains unresolved; polymeric IgA and 
IgM molecules devoid of J chain have been described [for review, 
see Ref. (108)]. Human α1 and α2 chains as well as α chains from 
other species comprise one variable- and three constant-region 
domains, each containing ~110 amino acids. Although com-
parable in its general structure to the γ chains of IgG, there are 
several important structural differences that are characteristic of 
α chains. These differences include the unique HR between Cα1 
and Cα2 domains, the extension of the C terminus of the α over 
γ chains by 18 amino acids essential for the J chain binding and 
polymerization, and the glycan moieties characteristic of the α1 
and α2 chains (107). All three constant-region domains of α1 and 
α2 chain have 90–98% primary structure homology; the differ-
ence is restricted to the HR and allotype-associated sequences in 
IgA2 molecules. There are 17 Cys residues that participate in the 
intradomain and interchain disulfide bridges. In polymeric IgA, 
the penultimate Cys residue of the α chain tailpiece is involved 
in the binding of J chain and formation of polymers. This small 
glycosylated peptide contains ~137 amino acids (107). The major 
structural difference between α1 and α2 heavy chains occurs in 
the HR that consists of 26 and 13 amino-acid residues in α1 and 
α2 chains, respectively. The additional 13 amino-acid residues 
in IgA1 HR consist of repeated sequences of Pro, Ser, and Thr 
residues. By its general structure, HR is reminiscent of mucin 
molecules.

The total circulating pools of IgA1 and IgA2 are 101 ± 26 and 
14 ± 4 mg/kg body weight, respectively (109). Approximately 55% 
of total IgA is in the intravascular compartment; the remainder 
is in interstitial fluid. These data do not include IgA produced 
in mucosal tissues and selectively transported into the external 
secretions (secretory IgA). However, IgA from mucosal tissues 
contributes only small quantities to the circulatory pool (110).
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IgA1 HR is a target of IgA-specific proteases produced 
by pathogenic bacteria, such as Haemophilus influenzae, 
Streptococcus pneumoniae, Neisseria meningitides, and Neisseria 
gonorrhoeae (111). Furthermore, the extended IgA1 HR confers 
greater flexibility of Fab “arms” (107) and facilitates interactions 
with antigens. The tailpiece of α chains and of μ chains of IgM 
contains a Cys residue to which J chain is attached. The presence 
of J chain in polymeric IgA and IgM is essential for the binding of 
polymeric immunoglobulin receptor (112). Not all polymeric IgA 
and IgM molecules contain J chain. For example, hexametric IgM 
produced in small quantities at the early phase of the immune 
response is devoid of J chain. Similarly, it appears that various 
human polymeric IgA myeloma proteins display variable J chain 
content. J chain is produced not only in plasma cells synthesizing 
polymeric IgA or IgM but also in IgG-, IgD-, or light-chain-
producing multiple myeloma cells from mucosal tissues and bone 
marrow (107). The presence of J chain-containing polymeric IgA 
in circulating immune complexes and in mesangial deposits of 
IgAN patients suggests a mucosal origin of IgA1; however, the 
possibility that such polymeric IgA1 molecules are produced 
in the bone marrow of IgAN patients has been proposed (113). 
Further studies are needed to address this point.

Several investigators noted the effect of O-glycan heteroge-
neity on the propensity of some IgA1 glycoforms to aggregate 
under laboratory conditions using elevated temperatures (114). 
Moreover, non-galactosylated glycoforms of IgA1 exhibited 
binding with proteins of extracellular matrix (115). The 
authors of these studies suggested that IgA1 O-glycans played 
a protective role against aggregation and adhesion and that the 
underglycosylation of the IgA1 molecule may be involved in the 
non-immunologic glomerular accumulation of IgA1. It is not 
clear whether glomerular deposition of IgA1 that is not bound 
in complexes would lead to pathological consequences, i.e., 
mesangial proliferation and matrix expansion, and under what 
circumstances, and whether such a mechanism may play a role 
in the postulated heterogeneity of IgAN (116).

Immunohistochemical studies and results from short-
term culture experiments of human tissues supported the 
above-described distribution of the form of IgA (polymeric or 
monomeric) and the isotype (IgA1 or IgA2) in several fluids that 
parallels the distribution of cells in various tissues and organs. 
Measurements of antigen-specific antibodies in individual 
external secretions mirrored the distribution of IgA1- or IgA2-
producing cells in the corresponding mucosal tissues (107, 117). 
Furthermore, IgA-producing cells abundant in mucosal tissues 
secrete polymeric IgA that is efficiently transported through 
epithelial cells by a receptor-mediated mechanism into external 
secretions (112). Nevertheless, the contribution and location 
of polymeric IgA-producing cells to the circulating pool of IgA 
remain to be determined (107, 109).

The tissue origin of polymeric Gd-IgA1 bound in the circulat-
ing immune complexes and in mesangial immunodeposits of 
patients with IgAN is unclear. On the one hand, it is assumed 
that because of its polymeric character, Gd-IgA1 originates in 
mucosal tissues of the respiratory and/or gastrointestinal tracts. 
On the other hand, it is possible that the IgA-producing cells 
in the bone marrow may secrete, in addition to the dominant 

monomeric IgA1, also small quantities of polymeric IgA1 as a 
consequence of infection. The initial IgA responses to an infec-
tion or immunization, irrespective of the systemic or mucosal 
route of vaccination, are dominated by polymeric IgA in serum 
and secretions [for review, see Ref. (118–120)].

Studies of the association of naturally occurring or immuni-
zation-induced serum and secretory IgA antibodies to different 
types of antigens provided several highly relevant findings (107, 
109). Antibodies specific for protein-, glycoprotein-, and virus-
derived antigens (e.g., influenza and HIV) are dominantly of the 
IgA1 subclass; in contrast, antibodies against polysaccharides, 
lipopolysaccharides, and teichoic acid are associated with the 
IgA2 subclass. Notably, systemic or mucosal immunization 
with influenza virus vaccine induces a mainly polymeric IgA1 
response in serum; polymeric IgA2-dominant responses are 
detected in individuals immunized with polysaccharide vaccines 
(107, 109). Thus, the type of the antigen substantially influences 
the IgA subclass-associated response. Some studies showed that 
patients with IgAN had reduced in IgA1 responses to challenges 
with some antigens (121, 122), whereas another study observed 
differential O-glycosylation of IgA1 antibodies against mucosal 
vs. systemic antigens (120). Moreover, some investigators have 
found secretory IgA1 (with secretory component) in renal depos-
its (123, 124) or polymeric IgA1 (125), suggesting that this IgA1 
was generated during a mucosal immune response (126). It is not 
clear whether secretory IgA1, regardless of its O-glycosylation 
pattern, may be a major driver of the pathogenesis of IgAN.

IgA1-Producing Cells
The macroscopic hematuria associated with upper respiratory 
tract infections in patients with IgAN suggests that the synphar-
yngitic hematuria may reflect an inflammatory environment 
conducive to driving renal complications (127). IgA produced in 
the mucosal compartments is polymeric, the predominant form 
of Gd-IgA1 (128). Thus, circulatory Gd-IgA1 may originate from 
mucosal tissues, and local infections may accentuate Gd-IgA1 
production. This concept is the subject of ongoing research that 
may elucidate mechanisms, which are responsible for increased 
levels of circulatory Gd-IgA1.

IgA1 production at mucosal tissues from resident IgA1-
producing cells serves several functions; in this review, we 
will focus on mechanisms of aberrant IgA1 O-glycosylation in 
patients with IgAN. The Japanese Society of Nephrology now rec-
ommends tonsillectomy for treatment of IgAN, as tonsillectomy 
in combination with glucocorticoid pulse therapy improved renal 
outcomes in many patients with IgAN and macroscopic hematuria 
(129). However, a benefit of tonsillectomy on disease progression 
was not found in European cohorts (130), which could be due 
to genetic differences or early screening that is routinely done 
in Japan. Recent data suggest that B cells isolated from tonsils of 
patients with IgAN exhibit increased IL-4 and IFNγ production 
upon exposure to hemolytic streptococci and lipopolysaccharides 
when compared to tonsillar B cells from controls (131). Increased 
numbers of memory B cells were found in tonsils (5.7 vs. 1.8%) 
and peripheral blood (4.9 vs. 0.9%) of IgAN patients compared 
to controls; this finding correlated with proteinuria (r  =  0.81) 
(132). Moreover, patients with IgAN after tonsillectomy had 
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fewer peripheral blood memory B cells (4.9% regressed to 1.1%) 
(132). These studies highlight the role of inflammation and the 
importance of the mucosal-circulatory connection in patients 
with IgAN.

Other studies revealed increases in TLR9 and B-cell-activating 
factor (BAFF) mRNA expression in peripheral blood mono-
nuclear cells as well as increased serum levels of BAFF protein 
(133). Mice overexpressing human BAFF develop a commensal 
microbiota-dependent IgA-associated nephropathy (134, 135). 
BAFF induces class-switch recombination in B cells and may 
drive the circulatory IgA1 levels in patients with IgAN (136). 
Moreover, more L-selectin was found in B and T cells derived 
from the circulation of patients with IgAN (137, 138). Together, 
these data suggest a proinflammatory state of B cells in patients 
with IgAN. This finding corroborates in vitro data, showing that 
certain cytokines can enhance production of Gd-IgA1 (139).

To study molecular mechanisms of production of Gd-IgA1, 
peripheral blood mononuclear cells and tonsillar B cells were 
isolated from IgAN patients and controls, and Epstein–Barr virus 
(EBV)-immortalized cells were generated. From these mixed cell 
lines, IgA1-producing cells were isolated through limiting dilution 
subcloning. Analysis of IgA1 secreted by these cell lines derived 
from blood of patients with IgAN showed enhanced production 
of Gd-IgA1 when compared to controls. The degree of galactose 
deficiency of IgA1 secreted by EBV-immortalized B cells cor-
responded to the serum Gd-IgA1 levels from the corresponding 
donors, indicating that glycosylation of IgA1 and Gd-IgA1 
production had not been altered by EBV immortalization (140). 
These cell lines provide a new tool for studies of biosynthesis of 
Gd-IgA1 (93).

Signaling in IgA1-Producing Cells
As noted above, patients with IgAN often exhibit macroscopic 
hematuria associated with mucosal infections. These infections 
may be associated with increased production of IgA and Gd-IgA1 
(141). The exacerbation of kidney damage associated with acute 
infection/inflammation in patients with IgAN may be transient 
or permanent, and it indicates a connection with activated 
immune system (127). Increased levels of markers of inflamma-
tion, such as IL-6 and soluble vascular cell adhesion molecule-1 
(sVCAM-1), have been found in the blood of patients with IgAN 
(142, 143). Some proinflammatory cytokines, such as IL-6 and 
leukemia inhibitory factor (LIF), increase production of Gd-IgA1 
in B cells from patients but not controls (139). In IgA1-producing 
cells from patients with IgAN vs. healthy controls, IL-6 showed 
increased and prolonged activation of STAT3 (144). As STAT3 
is the canonical transcription factor of IL-6 and other cytokines, 
changes in signaling and transcription driven by STAT3 may have 
an important role in Gd-IgA1 production (145).

Production of Gd-IgA1 in patients with IgAN has been linked 
to aberrant expression and activities of specific glycosylation 
enzymes in the Golgi apparatus for normal O-glycosylation 
(146, 147). Galactose deficiency of IgA1 O-glycans can be due 
to a reduced rate of galactosylation or premature sialylation that 
would prevent addition of galactose. Further dysregulation by IL-6 
of the corresponding enzymes (see Mechanisms and Pathways 
Involved in Production of Aberrantly Glycosylated IgA1 for 

details) involved in these processes was observed (139), but the 
detailed mechanism that leads to these changes is unknown.

In addition to cytokines, it is also possible that other B-cell-
stimulating factors may contribute to increased production of 
Gd-IgA1 (148). These factors, such as BAFF, may drive IgA class 
switching, B-cell differentiation and antibody production, and 
cellular proliferation (149). Such signaling ligands may share 
similar receptors (Figure  4). Several GWAS have implicated a 
locus encompassing the APRIL gene (TNFSF13) in IgAN, and 
serum levels of the expressed ligand were elevated in patients with 
IgAN (136, 150). Increased amounts of BAFF are also found in 
sera and tonsillar tissue of some patients with IgAN (151). Mice 
with BAFF overexpression exhibited a microbiota-dependent 
IgA-associated glomerulonephritis, further implicating B-cell 
activation in IgA glomerular deposition (135).

Production of Gd-IgA1 by IgA1-producing cells is enhanced 
in patients with IgAN, possibly through altered signaling of path-
ways involving STAT3. Contributing factors related to abnormal 
signaling could be genetic, as indicated by the increased serum 
levels of Gd-IgA1 in asymptomatic relatives of patients with 
IgAN (152). Environmental factors play a role as well, as there is 
a connection between infection/inflammation and disease activ-
ity. Future research is needed to define the interaction between 
environmental and genetic factors, and how it relates to signaling 
changes in IgA1-producing cells.

IgA Metabolism/Catabolism
IgA from the circulation is primarily catabolized in the liver 
(107, 110, 112). IgA bound to ASGP-R expressed on hepatocytes 
in the presence of Ca2+ is internalized, and the IgA-containing 
vesicles fuse with lysosomes resulting in intracellular degrada-
tion (63, 64, 153). Experiments with human IgA1 and IgA2 
myeloma proteins in their monomeric or polymeric forms (62) 
demonstrated that in monkeys, the liver has the highest uptake of 
IgA. Hepatocytes compared to non-parenchymal cells were more 
active in the catabolism of IgA (62). Only small quantities of IgA 
were catabolized in the kidneys, skin, and spleen. The importance 
of the ASGP-R in IgA catabolism was further confirmed using a 
human hepatoma cell line (64). Of note, autoantibodies specific 
for ASGP-R have been observed in patients with autoimmune 
hepatitis (154). The marked species-dependent differences in 
the structure, transport, metabolism, and catabolism of IgA of 
different molecular forms must be taken into consideration in 
animal models of IgAN as well as the fact that different molecular 
dimensions of monomeric and polymeric IgA and polymeric 
IgA-containing immune complexes affect the catabolism and 
distribution of free or complexed IgA.

Mechanisms and Pathways involved in 
Production of Aberrantly Glycosylated igA1
Normal serum IgA1 O-glycans consist predominantly of 
galactose-β1-3GalNAc dissaccharide, also known as T antigen, 
and its mono- or di-sialylated forms [NeuAcα2-3-galactose-β1-
3GalNAc and NeuAcα2-3-galactose-β1-3(NeuAcα2-6)GalNAc, 
commonly described as sialyl-T (ST) antigen] (Figure  3, left 
panel) (44, 45). O-glycosylation of IgA1 HR involves multiple 
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glycosyltransferases that add one monosaccharide at a time in a 
stepwise manner to a growing O-glycan chain. O-glycosylation 
of IgA1 takes place in the Golgi apparatus (93). O-glycosylation 
is initiated by attachment of GalNAc to Ser/Thr residues by the 
activity of a UDP-GalNAc:polypeptide GalNAc-transferase family 
(ppGalNAc-Ts), consisting of 20 members in humans (155, 156). 
Dominant role during IgA1 HR O-glycosylation was attributed 
to the ubiquitous GalNAc-T2 (157). Further work indicates that 
GalNAc-T1 and GalNAc-T11 can also initiate O-glycosylation 
of IgA1 (158). Recently, we compared transcript levels of all 
known human GalNAc-Ts in IgA1-producing cells from IgAN 
patients and disease controls and identified significant differences 
for only GalNAc-T14 (159, 160). Preliminary data indicate that 
GalNAc-T14 could attach GalNAc to IgA1 HR and thus may con-
tribute to the aberrant glycosylation of IgA1 (161). Interestingly, 
GalNAc-T14 is structurally the closest relative of GalNAc-T2 
(162). Overexpression of GalNAc-T14 in IgA1-producing cells 
from IgAN patients could contribute to the increase in the overall 
number of O-glycans on IgA1 in IgAN patients (163).

After the initial addition of GalNAc to Ser/Thr residues, 
galactose is added by UDP-galactose:GalNAc-α-Ser/Thr β1,3-
galactosyltransferase (C1GalT1) (164). A deficiency of C1GalT1 
results in truncation of O-glycans (165). The biosynthesis of 

active C1GalT1 depends on molecular chaperone Cosmc (166, 
167). Cosmc mutation(s) is associated with the expression of 
the terminal GalNAc and sialylated GalNAc (also called Tn 
and STn antigens, respectively) in various neoplastic lesions 
and Tn syndrome (167–169) but not in IgAN (170). Decreased 
levels of C1GalT1 transcript and protein activity were detected 
in subcloned Gd-IgA1-producing cells from IgAN patients 
(93). C1GalT1 deficiency is further accentuated after exposing 
the IgA1-producing cells to IL-6 (139). Together with the con-
stitutionally increased activity of GalNAc-T14, IgA1-producing 
cells could, under local inflammatory conditions, insufficiently 
galactosylate GalNAc residues attached in the IgA1 HR.

Galactose-β1,3GalNAc structures are subsequently modified 
by attaching sialic acid from CMP-N-acetylneuraminic acid 
(CMP-NeuAc) to galactose residues by the activity of galactose-
β1,3GalNAc α2,3-sialyltransferase (ST3Gal) and/or to the GalNAc 
residues by activity of an α2,6-sialyltransferase (ST6GalNAc) (171, 
172). Neuraminidase-driven in vitro removal of sialic acid from 
IgA1 produced by EBV-immortalized cells from IgAN patients 
(93) and nasopharyngeal carcinoma (Dakiki cells) (146) enhanced 
reactivity with GalNAc-specific lectin (HAA). These studies sug-
gested that some Tn O-glycans on IgA1 are capped with sialic 
acid (sialyl-Tn antigens) (93, 146, 173). The analysis of all known 
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human ST6GalNAc transcripts (ST6GALNAC1–6) performed 
by real-time RT-PCR showed that ST6GalNAc-I, an enzyme 
described to be responsible for sialylation of Tn antigens, is not 
expressed in IgA1-producing cells; however, abundant transcrip-
tion of ST6GALNAC2 was detected. Other ST6GALNAC genes 
were transcribed either in similar extent between Gd-IgA1- and 
normal IgA1-producing cells (ST6GALNAC3, ST6GALNAC4, and 
ST6GALNAC6) or were not detectable (ST6GALNAC5) (93, 146, 
174). Recombinant human ST6GalNAc-II can sialylate terminal 
GalNAc of IgA1 in vitro (174). Involvement of ST6GalNAcII in 
sialylation of Tn antigens on IgA1 HR was confirmed by reduced 
HAA reactivity with IgA1 secreted from Gd-IgA1-producing 
cells lines, in which ST6GalNAc-II activity was suppressed by 
siRNA-driven ST6GALNAC2 knock-down (139). Subsequent 
in  vitro experiments, in which α2,6-sialyltransferase and β1,3-
galactosyltransferase enzymes were obtained as a Golgi extract 
from Gd-IgA1-producing cells, confirmed that sialylation of 
terminal GalNAc blocks effective galactosylation (139). Thus, 
premature sialylation, associated with increased transcriptional 
activity of ST6GALNAC2 in Gd-IgA1-producing cells, may 
contribute to Gd-IgA1 production in IgAN. Sialyltransferases are 
localized predominantly in trans-Golgi compartments, but the 
observation that galactose-deficient sialylated GalNAc-containing 
IgA1 is present throughout the Golgi (93) suggested a possible 
abnormal relocalization of sialyltransferases toward cis-Golgi. 
This abnormality may contribute to the galactose deficiency of 
IgA1 O-glycans. However, studies of subcellular localization of 
individual enzymes are needed to confirm this hypothesis.

In summary, Gd-IgA1-producing cells from IgAN patients 
have elevated expression GalNAc-T14 and ST6GalNAc-II, and 
decreased expression of C1GalT1 and Cosmc (93, 159). As macro-
scopic hematuria in IgAN patients often coincides with mucosal 
infections, inflammation may enhance galactose deficiency of 
IgA1. Indeed, IL-6 and, to a lesser extent, IL-4 accentuated galac-
tose deficiency of IgA1 secreted by cell lines from IgAN patients 
(139). Stimulation of cells from IgAN patients with IL-6 increased 
α2,6-sialyltransferase activity and decreased activity of C1GalT1, 
whereas IL-4 only reduced the activity of C1GalT1 (139). These 
experiments indicate that IgA1-producing cells from IgAN 
patients accentuate production of Gd-IgA1 upon stimulation 
with IL-6. Aberrancies in JAK–STAT signaling pathways may be 
involved in these processes (144).

Genetics of Aberrant Glycosylation of igA1
Comprehensive studies of the glycosylation abnormalities of IgA1 
offered a potential phenotypic biomarker for IgAN, Gd-IgA1 (61, 
69, 70, 88, 89, 175). A quantitative lectin-binding assay enabled 
assessment of the inheritance of Gd-IgA1 in familial and spo-
radic forms of IgAN (152). Elevated serum levels of Gd-IgA1 
were found in most patients with IgAN, as well as many of their 
first-degree relatives, whereas levels in spouses were similar to 
those of healthy controls. Segregation analysis of Gd-IgA1 levels 
suggested inheritance of a major dominant gene with an addi-
tional polygenic component. The inheritance of Gd-IgA1 serum 
levels has been confirmed in patients with familial and sporadic 
IgAN (52, 176, 177), and in pediatric patients with IgAN and 
HSP with nephritis (178). Thus, aberrant IgA1 glycosylation is 

a common inherited defect that provides a unifying link in the 
pathogenesis of HSP with nephritis and IgAN in many popula-
tions worldwide (93, 179).

iMMUNe COMPLeXeS CONTAiN 
GALACTOSe-DeFiCieNT igA1 iN igA 
NePHROPATHY

It is now well accepted that the circulation of patients with IgAN 
contains immune complexes consisting of Gd-IgA1 [for reviews, 
see Ref. (61, 180)]. Initial analyses showed that Gd-IgA1 was pre-
dominantly in large-molecular-mass fractions of serum and was 
associated with IgG, thus indicating a possibility that Gd-IgA1 
was bound by IgG in an immune complex (31). A follow-up study 
confirmed that circulating immune complexes in patients with 
IgAN consist of polymeric Gd-IgA1 bound by IgG antibodies 
specific for GalNAc residues in the hinge-region O-glycans of 
IgA1 heavy chains (49).

Elevated serum levels of Gd-IgA1 are found not only in patients 
with IgAN but also in patients with HSP with nephritis (57, 88, 
178). It is now proposed that the pathology of HSP with nephritis 
and IgAN is driven by glomerular deposition of large immune 
complexes from the circulation (6, 18). Importantly, patients with 
HSP without nephritis have only IgA–IgA immune complexes, 
whereas patients with HSP with nephritis have IgA–IgA and 
IgA–IgG immune complexes (58).

AUTOANTiBODieS AGAiNST 
GALACTOSe-DeFiCieNT igA1 iN  
igA NePHROPATHY

Autoantibodies forming complexes with Gd-IgA1 in the blood 
of IgAN patients are predominantly of the IgG isotype (31, 
181). These autoantibodies recognize HR of IgA1 with terminal 
GalNAc residues (31, 182). This conclusion was based on several 
experiments. Binding of IgG autoantibodies from serum samples 
of IgAN patients was tested using ELISA with several antigens: 
enzymatically desialylated and degalactosylated IgA1 myeloma 
protein (dd-IgA1), Fab fragment of Gd-IgA1 containing part of 
the HR with O-glycans (Fab-IgA1), synthetic HR peptide linked 
to bovine albumin (HR-BSA), and a synthetic HR glycopeptide 
with three GalNAc residues linked to BSA (HR-GalNAc-BSA). 
Binding to dd-IgA1 and Fab-IgA1 was significantly higher for 
IgG from sera of patients with IgAN than that for IgG from 
sera of healthy controls. IgGs from IgAN patients recognized 
HR-GalNAc-BSA but not HR-BSA. These experiments thus 
confirmed that IgG autoantibodies from IgAN patients recognize 
terminal GalNAc on IgA1 HR (140, 182).

To better understand at a molecular level the nature of IgG 
autoantibodies specific for Gd-IgA1, panels of monoclonal IgG 
autoantibodies were cloned and characterized. EBV-immortalized 
IgG-secreting lymphocytes derived from peripheral blood of 
patients with IgAN and healthy controls were generated and, 
using limiting dilutions, single-cell clones producing IgG specific 
for Gd-IgA1 were isolated (182). Using single-cell RT-PCR, 
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variable regions of heavy and light chains were amplified, cloned, 
and sequenced. Selected paired variable regions of heavy and light 
chains were also cloned and expressed as recombinant IgG, and 
binding to Gd-IgA1 was assessed. These experiments confirmed 
and extended previous observations that IgG autoantibodies 
bound to Gd-IgA1 and that such binding required terminal 
GalNAc. Moreover, sequence analysis of variable regions of heavy 
chains of IgG autoantibodies and comparison of the binding of the 
IgG to Gd-IgA1 pointed out some interesting features. For exam-
ple, complementarity determining region 3 (CDR3) of variable 
region of heavy chain tended to be longer in IgG autoantibodies 
from patients with IgAN compared to that of IgG from healthy 
controls. Furthermore, a Ser residue was in the third position of 
CDR3 of autoantibodies in six of the seven studied patients with 
IgAN. In contrast, IgG from six healthy controls had Ala in that 
position (182). These observations thus implicated Ser residue in 
CDR3 in binding of Gd-IgA1. Recombinant IgG from a patient 
with IgAN was generated by site-directed mutagenesis to change 
the Ser residue in the third position of CDR3 of the heavy chains 
to Ala. This mutation reduced binding to Gd-IgA1. Conversely, 
introducing Ser residue in the third position of CDR3 of the heavy 
chains of IgG from a healthy control increased the binding of the 
IgG to Gd-IgA1 (182). Recent study has shown that Ser in CDR3 
in the heavy chains of IgG autoantibodies originates from somatic 
mutations rather than from rare variants of VH genes (183). 

eNGiNeeReD iMMUNe COMPLeXeS 
CONSiSTiNG OF GALACTOSe-DeFiCieNT 
igA1 AND ASSeSSMeNT OF THeiR 
BiOLOGiCAL ACTiviTY

It has been observed that levels of IgA1-containing immune 
complexes in patients with IgAN correlated with clinical and 
histological activity (27). It was later clarified that such complexes 
consist of Gd-IgA1 bound by antiglycan antibodies (49, 184, 
185). To study biological activities of IgA1-containing immune 
complexes, a model of cultured primary human mesangial cells 
has been used (186). With this approach, it was shown that 
Gd-IgA1-containing immune complexes from patients with 
IgAN bound to the cells more efficiently than did uncomplexed 
IgA1 or immune complexes from healthy controls (53, 91). 
Moreover, large-molecular-mass complexes from sera of patients 
with IgAN stimulated cellular proliferation and production of 
cytokines (e.g., IL-6 and TGF-β) and components of extracellular 
matrix (50–52, 61, 91, 95, 187–192). The role of IgA1-containing 
immune complexes in these activities is confirmed by the fact that 
IgA1-depleted fractions are devoid of such stimulatory activities 
(50, 91, 95). Consistent with this finding, when sera of IgAN 
patients are supplemented with small quantities of polymeric 
Gd-IgA1, new IgA1-containing immune complexes are formed 
and, thus, the amount of stimulatory large-molecular-mass 
immune complexes increases (50, 91). These complexes contain 
IgG in addition to IgA1, just as do the native complexes (61, 95). 
In contrast, uncomplexed polymeric Gd-IgA1 or smaller immune 
complexes do not induce proliferation of cultured primary human 
mesangial cells.

Supplementation of Gd-IgA1 to serum from IgAN patients 
formed pathogenic immune complexes (50, 95), indicating an 
excess of antiglycan antibodies against Gd-IgA1. Following this 
approach, a new protocol for in vitro production of biologically 
active IgA1-containing immune complexes was developed. Cord 
blood serum, known to contain IgG but no other immunoglobu-
lins, with high levels of antiglycan IgG was used to bind to Gd-IgA1 
myeloma proteins to form immune complexes. Formation of 
biologically active immune complexes that stimulated cellular 
proliferation of cultured primary human mesangial cells required 
Gd-IgA1, antiglycan IgG antibody, and a heat-sensitive serum 
factor (193).

This model of formation of engineered immune complexes was 
later enhanced by using recombinant IgG specific for Gd-IgA1 
from a patient with IgAN (182) with serum as the source of other 
factor(s) (193). Notably, these engineered immune complexes 
stimulate signaling in cultured primary human mesangial cells 
and increase cellular proliferation in a similar fashion as with 
native IgA1-containing complexes in sera of patients with IgAN 
(194, 195).

COMPOSiTiON OF iMMUNe  
COMPLeXeS CONSiSTiNG OF 
GALACTOSe-DeFiCieNT igA1

In IgAN, complement C3 frequently colocalizes with IgA in 
mesangial immunodeposits (2, 6, 196) and is also present in 
IgA1-containing circulating immune complexes of patients 
with IgAN (28). Moreover, a deletion of CFHR1 and CFHR3 
genes encoding complement factor H-related factors 1 and 3, 
the factors involved in the regulation of factor H (197–199), 
protects against the occurrence of IgAN (8, 150, 179). These 
observations underscore the contribution of the complement 
alternative pathway (AP) to pathophysiology of the disease 
[recently reviewed Ref. (200)]. Using the abovementioned model 
of engineered immune complexes and targeted proteomic and 
immunologic analyses, complement C3 products associated with 
these Gd-IgA1–rIgG complexes were studied (201). Proteomic 
analysis revealed C3 α and β chain elements in the active large-
molecular-mass Gd-IgA1–rIgG immune complexes and only 
low amounts of β chain in corresponding fractions in a negative 
control (serum only, not supplemented with Gd-IgA1 or rIgG). 
Amino-acid sequence by mass spectrometric analysis of specific 
bands from SDS-PAGE identified iC3b, C3c, and C3dg in the 
Gd-IgA1–rIgG immune complexes (201). Presence of these C3 
fragments was confirmed by immunoblotting. Thus, biologically 
active Gd-IgA1–rIgG complexes activate complement C3 in vitro 
and associate with C3 degradation fragments. The observed C3 
components (iC3b, C3c, and C3d) result from the combined 
action of factors I and H, suggesting a critical role of regula-
tors in activation of the complement AP in IgAN (200). Thus, 
(1) addition of serum to Gd-IgA1 bound by anti-Gd-IgA1–IgG 
autoantibody results in dose-dependent formation of pathogenic 
immune complexes that activate cultured human mesangial cells 
and (2) stimulatory immune complexes contain activated C3 
products. The relatively small size of these C3 fragments in the 
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FiGURe 5 | Complement activation pathways. Each pathway results in formation of a C3 convertase that, after addition of C3b, becomes a C5 convertase. The 
generation of C5b starts the formation of membrane attack complex (C5b–9). Regulatory factors are in red. CR1, complement receptor 1; FD, factor D; MAC, 
membrane attack complex; MCP, membrane cofactor protein; P, properdin; DAF, decay accelerating factor; MBL, mannan-binding lectin; MASP, MBL-associated 
serine proteases.
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nephritogenic immune complexes (molecular mass ~800  kDa) 
and the association of these C3 fragments with Gd-IgA1–IgG 
immune complexes suggest direct binding of C3 and activation 
of the alternative complement pathway in this in vitro model of 
IgAN immune complexes (201).

ROLe OF COMPLeMeNT iN  
igA NePHROPATHY
The role of complement in the pathogenesis of IgAN has been 
suspected since 1980s, based on the commonly observed mesan-
gial codeposition of C3 with IgA (2, 200, 202).

Overview of Complement Activation
Complement can be activated through three pathways (Figure 5). 
The classical pathway (CP) is initiated by the recognition of some 
IgG subclasses (IgG1 and IgG3, and IgG2 to a lesser extent) and 
IgM by C1q. C1q then binds C1r and C1s and cleaves successively 
C2 and C4 to form C4b2a complex, a C3 convertase. The AP is 
activated continuously by spontaneous hydrolysis of C3, expos-
ing an unstable thioester bond and changing C3 conformation to 
allow its interaction with complement factor B, forming C3(H2O)
Bb, which cleaves C3 into C3a and C3b (Figure 6) (203). This 
process is tightly controlled by AP regulatory proteins, such as 
complement factors I and H, and DAF. Without these regulators, 

especially on an activating surface (such as a bacterial cell-wall 
glycan), an amplification loop develops in the presence of factor D 
and properdin, leading to the accumulation of C3bBb, the AP C3 
convertase. The third pathway, the “lectin pathway,” is activated 
by some sugar moieties, such as mannose or glucosamine on the 
surface of bacterial cell walls, through interaction with mannan-
binding lectin (MBL). The activation process is thereafter similar 
to the CP to generate C4b2a. Finally, C3 convertase cleaves C3 
into C3b that is added to the complex to form C5 convertase. This 
complex cleaves C5 into C5a and C5b. The latter product binds 
C6, C7, C8, and C9 (C5b–9) to form the terminal complement 
complex that can insert into cell-membrane lipid bilayers. This 
final process can lead to cell lysis or, more commonly in nucleated 
cells, cellular stress (sublytic complement attack) (204, 205).

involvement of Complement Pathways
Alternative pathway is considered an important player in the 
pathogenesis of IgAN. First, key AP components are codeposited 
with IgA in the glomerular mesangium. C3 is detected in the 
immunodeposits in kidney tissue in up to 90% of cases (206–208) 
as well as properdin (75–100%) and factor H (30–90%) (202, 209, 
210). Plasma concentrations of C3 inactivation products (iC3b 
and C3d) are elevated, reflecting increased production of C3b 
(211–213). IgA can activate AP in vitro, especially while immobi-
lized on a surface in a polymeric form (214, 215).
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FiGURe 6 | C3 proteolytic cascade. The hydrolysis of C3 leads to release 
of activation products C3a – an anaphylatoxin – and C3b. C3b binds 
activating surfaces, such as a bacterial cell wall, triggering the alternative 
pathway cascade. This activation is controlled by regulator molecules, such 
as FI, FH, and complement receptor 1 (CR1), that degrade C3b into products 
that cannot contribute to the formation of the C5 convertase (iC3b, C3c, 
C3dg, and C3d). Detection of these inactive breakdown products is 
considered evidence of activation of C3. The numbers, in kilodaltons, 
represent the molecular masses of the corresponding polypeptides. MCP, 
membrane cofactor protein.
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More recently, GWAS (150, 179) identified a single nucleotide 
polymorphism (SNP) at position 1q32 in factor H gene that was 
strongly protective against IgAN (odds ratio 0.74 for one allele 
and 0.55 for two alleles). This SNP was in total linkage disequilib-
rium with the large deletion of complement factor H-related genes 
1 and 3 (CFHR1 and CFHR3), positioned downstream of factor H 
gene. The copy number association study confirmed the protec-
tive impact of this deletion on the risk to develop IgAN. Products 
of these genes are also AP regulatory proteins that can bind C3 in 
a similar way as with factor H (216). However, these proteins are 
less efficient than factor H to regulate AP, such that their absence 
could lead to a stronger factor H-mediated AP inhibition (198). 
A recent study has shown that CFHR1 and CFHR3 deletion was 
associated with higher serum levels of factor H and C3, lower 
serum C3a levels, and less C3 mesangial deposition in Chinese 
patients with IgAN (199).

The lectin pathway has been examined as a potential mediator 
for IgAN severity and/or progression of the disease (124, 217, 
218). In vitro activation of this pathway by polymeric immobi-
lized IgA certainly occurs (219). Several studies have confirmed 
the negative prognostic impact of the mesangial codeposition of 
lectin pathway elements, including MBL, MBL-associated serine 
proteases (MASP-1 and MASP-2), L-ficolin, C4d, and C4-binding 
protein (220, 221).

The CP is not considered to be a significant player in IgAN, as 
IgA cannot activate it and actually hinders its activation by IgG 
(215). C1q is usually missing in IgAN kidney biopsies (<10%, as 
trace) (207, 222), and the presence of C4 is more representative 
of lectin pathway activation (220).

The terminal complement complex is commonly codeposited 
with IgA (210, 223), and its urinary excretion is increased (224). 
Sublytic C5b–9 can induce mesangial stress, potentially leading 
to the elevated production of fibronectin, TGF-β, and IL-6 (205, 
225). Podocytes can also be severely affected by C5b–9 that can 
cause cell injury (204, 226).

Site of Complement Activation
The elevated levels of plasma C3 breakdown products in IgAN 
patients suggest a soluble-phase activation of the AP. Similarly, 
a model of mixed IgA–IgG complexes supported this conclusion 
and indicated that C3 activation required IgG (227). Recently, 
proteomic analyses of patients’ circulating immune complexes, 
as well as engineered in  vitro complexes (formed with poly-
meric Gd-IgA1, antiglycan IgG, and IgA/IgG-depleted normal 
serum), revealed cleavage products in high-molecular-mass 
fractions isolated by size-exclusion chromatography (201). 
Thus, IgAN immune complexes can act as a surface for AP 
activation, leading to cleavage of C3 into C3b and thereafter to 
factor I-dependent inactivated C3 products (iC3b, C3c, C3d, 
and C3dg).

C3 glomerulonephritis illustrates that AP activation leading 
to mesangial deposition of C3 products can induce a mesangio-
proliferative disorder by itself, without significant deposition of 
immunoglobulins (228). Mesangial cells are potent players in 
complement-driven glomerular inflammation. They produce 
factor H and, under inflammatory conditions (IL-1 and TNF-α), 
express C3 (229). Mesangial cells can express C3 after stimulation 
by Gd-IgA1-containing immune complexes (230). C3a, an ana-
phylatoxin produced by the cleavage of C3, can induce cultured 
human mesangial cells to switch to a secretory phenotype that 
leads to increased production of mesangial extracellular matrix 
elements (231).

impact on Disease Activity and 
Progression
Complement consumption and deposition in patients with kid-
ney disease can be assessed with serum, urine, and kidney biopsy 
specimens. A decreased serum C3 level has been proposed as a 
disease activity biomarker in several studies from Asia. Serum 
IgA/C3 ratio has also been associated with IgAN severity (232, 
233). A European pediatric study showed a positive correlation 
of IgA/C3 ratio with clinical- and Oxford classification-based 
kidney tissue injury (234). Whether plasma factor H level could 
be a reliable disease activity biomarker remains uncertain, as 
findings of other studies were inconsistent (235, 236).

Urinary excretion of complement elements has also been 
evaluated, mostly in Asia. Two studies showed greater excretion 
of factor H (237) and C5b–9 (224) compared to healthy controls, 
but without a disease-control group with proteinuria.

The deposition of complement elements in glomeruli could 
also be a valuable tool to predict IgAN progression. The intensity 
of mesangial C3 deposition was associated with worse clinical 
outcome (238, 239). Finally, activation of lectin pathway leading 
to C4d deposition in IgAN predicted worse outcomes in three 
retrospective studies (221, 240, 241).
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ACTiviTieS AND CATABOLiSM OF  
igA1-CONTAiNiNG CiRCULATiNG 
iMMUNe COMPLeXeS

Size and composition of immune complexes determine biological 
activities (50, 71, 95, 193). Based on the size, circulating IgA1-
containing immune complexes in IgAN patients can be divided 
into two groups: immune complexes with high molecular mass 
(>800  kDa) and immune complexes with low molecular mass 
(≤800  kDa). Notably, the high-molecular-mass complexes 
activate cultured human mesangial cells, as indicated by cellular 
proliferation and overproduction of cytokines and components of 
extracellular matrix (50, 95). In contrast, the low-molecular-mass 
complexes exhibit an inhibitory effect (95). Circulating immune 
complexes with higher content of Gd-IgA1 have enhanced capac-
ity to induce proliferation of mesangial cells, whereas complexes 
without Gd-IgA1 or Gd-IgA1 alone do not have proliferative 
effects (50). Stimulation of proliferation of mesangial cells by 
immune complexes containing Gd-IgA1 was confirmed by 
experiments with in vitro-formed immune complexes (193).

Stimulatory Gd-IgA1-containing complexes induce not only 
cellular proliferation but also production of laminin, a protein 
component of extracellular matrix (95). Similarly, production of 
laminin was increased by stimulation with TGF-β in a murine 
mesangial-cell model (242). Large-molecular-mass complexes 
bind to CD71 and activate mitogen-activated protein kinase/
extracellular-signal-regulated kinase (MAPK/ERK) pathway 
(243). This cellular activation alters crosstalk between mesangial 
cells and podocytes through TNF-α and TGF-β. These cytokines 
are released from mesangial cells in elevated amounts and induce 
expression of nephrin, erzin, and podocin in podocytes (191, 192). 
Furthermore, elevated production of TGF-β could contribute to 
glomerular fibrosis by enhancing expression of profibrotic genes 
driving accumulation of extracellular matrix. TGF-β increases 
expression of profibrotic connective tissue growth factor (CTGF) 
via sphingosine 1-phosphate receptor 5 (S1P5) on cultured human 
mesangial cells (244, 245).

Mesangial Receptors for igA1-Containing 
immune Complexes
It is not known which receptor(s) on mesangial cells plays a key 
role in binding to Gd-IgA1-containing immune complexes and 
activation of human mesangial cells. Myeloid IgA Fc receptor 
(CD89) and ASGP-R are not expressed on human mesangial 
cells (53, 246–249). Additional details on Fc receptors, including 
those on mesangial cells, can be found in a recent review with an 
extensive list of references (250). Currently, it is thought that the 
main receptor is CD71, known as transferrin receptor. CD71 is 
highly expressed in glomeruli of IgAN patients, and its localiza-
tion correlates to deposits of IgA (251, 252). Moreover, studies 
using mice expressing human IgA1 heavy chain and human 
CD89 indicated that complexes of IgA1–sCD89 could initiate an 
autoamplification process involving overexpression of transferrin 
receptor 1 (TFR1) and transglutaminase 2 (TGase2). Involvement 
of sCD89–IgA1 complexes and participation of TFR and TGase2 
explain an alternative mechanism of mesangial-cell activation 

(253). Adding to the complexity, other receptor candidates from 
a family of integrins (integrin α1/β1 and integrin α2/β1) also bind 
IgA1 on mesangial cells (254).

Taken together, local inflammation, cellular proliferation, 
and increased production of extracellular matrix components 
by mesangial cells activated by IgA1-containing complexes 
considerably impact glomerular function, leading to hematuria 
and proteinuria. Without disease-specific therapy, many patients 
progress to end-stage renal disease and require renal replacement 
therapy.

ANiMAL MODeLS

Small-animal models of IgAN can be very helpful in studies of 
various aspects of disease pathogenesis or testing efficacy of new 
therapeutic approaches. However, development of such models 
for IgAN has been hindered because only humans and hominoid 
primates have IgA1 with its O-glycans, a pivotal component in 
the pathogenesis of human disease. For example, mice have only 
one subclass of IgA and it resembles human IgA2 (255). However, 
several different models have been developed that may elucidate 
various specific aspects of IgAN (256) (Table 1).

Spontaneous Models
Spontaneous IgAN models include ddY mice, high-IgA (HIGA) 
mice, early-onset-grouped ddY mice (257–260), and marmo-
sets’ wasting syndrome. The last model is associated with IgA 
antigliadin antibodies and IgA-containing circulating immune 
complexes that deposit in the mesangium (261). The ddY mouse 
is a model of spontaneous murine IgAN based on development of 
glomerulonephritis associated with mesangial deposition of IgA 
with co-deposits of IgG, IgM, and C3 (257). Based on the age 
of disease onset, ddY mice are categorized as early-onset, late-
onset, and quiescent (i.e., no glomerulonephritis) phenotypes 
and are amenable to genomic analyses (259). GWAS identified 
four genetic susceptibility loci (D1Mit216, D1Mit16, D9Mit252, 
and D10Mit86) linked with the early-onset phenotype (259). The 
HIGA mouse strain was generated by interbreeding ddY mice 
with high serum IgA levels (258). However, serum IgA levels in 
HIGA mice were not associated with severity or incidence of 
disease (259). A more informative mouse model was developed 
by intercrossing early-onset ddY mice (260). These early-onset-
grouped ddY mice develop proteinuria by 8 weeks of age and renal 
failure at 24 weeks of age. The grouped early-onset ddY mice show 
severe glomerular and tubulointerstitial lesions, characterized by 
mesangial proliferation, mesangial matrix expansion, and tubu-
lointerstitial cellular infiltration. This model may provide useful 
insights into the pathogenesis of disease, to include identifying 
susceptibility genes, defining the role of IgA polymorphisms and 
IgA-containing immune complexes, and assessing the gender 
difference in progression of disease.

Models with Altered Genes
Knock-out and transgenic animal models include β1,4-
galactosyltransferase-I-deficient mice, human BAFF-transgenic 
mice, and IgA1-CD89-transgenic mice (135, 253, 262, 263). The 
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TABLe 1 | Selected animal models of igAN.

Model Key features and comparisons with human igAN

Spontaneous ddY mouse A spontaneous model of IgAN with mesangial deposits of murine IgA associated with glomerular injury. This model has a high degree of 
variability in the age of onset and severity of the disease, due to the heterogeneous genetic background (257)

High-IgA strain of ddY 
mouse (HIGA)

Established by interbreeding of ddY strains with high serum levels of murine IgA. HIGA mice have high serum IgA levels; however, serum 
IgA levels are not associated with the severity of glomerular injury and disease incidence (258, 259)

Grouped-ddY mouse Includes the early-onset group of ddY mice intercrossed over 20 generations, in which the development of IgAN includes mesangial 
deposits of murine IgA. Glomerular injury and proteinuria develop within 8 weeks of age. This model allows genetic analysis and studies of 
the pathogenesis involving IgA–IgG immune complex formation (260)

Spontaneous IgAN in 
marmosets

Marmosets in captivity are highly susceptible to a wasting syndrome that is apparently associated with IgA antigliadin antibodies and 
IgA-containing circulating immune complexes that deposit in the glomerular mesangium. Notably, this syndrome disappears after gluten is 
withdrawn from the diet. It is yet to be determined whether this syndrome may present a suitable animal model for human celiac disease 
and/or IgAN (261)

β1, 4-galactosyltransferase-
I-deficient mouse

These mice have a gene for a galactosyltransferase knocked-out and exhibit high serum levels of IgA with elevated portions of polymeric 
IgA. These mice have mesangial deposits of murine IgA and the N-glycans are deficient in galactose (262)

Human BAFF-transgenic 
mouse

Overexpression of human BAFF in mice results in elevated serum levels of murine IgA. Fatal glomerulonephritis is associated with 
mesangial deposits of IgA (135)

IgA1-CD89-transgenic 
mouse

Complexes of transgenic human IgA1 heavy chain-containing IgA with transgenic human-soluble CD89 deposit in the mesangium 
and induce hematuria and proteinuria. These mice develop mesangial IgA deposits, glomerular and interstitial macrophage infiltration, 
mesangial matrix expansion, hematuria, and mild proteinuria. Some studies question whether transgenic CD89 in this mouse model is 
involved in a similar manner as in humans (253, 263)

Passive mouse model of 
IgAN

Immunodeficient mice (e.g., SCID mice) are injected with preformed complexes of human Gd-IgA1 bound by antiglycan human IgG. 
The complexes of human immunoglobulins deposit in the glomerular mesangium with murine C3 co-deposits and induce mesangial 
proliferation, hematuria, and proteinuria. Human IgA1 autoantigen (Gd-IgA1) and IgG autoantibodies are used, but the model requires 
several injections of preformed complexes (264, 265)
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β1,4-galactosyltransferase-I-deficient mice show semi-lethality 
before weaning due to growth retardation and reduced inflam-
matory responses. The surviving β1,4-galactosyltransferase-I-
deficient mice developed similarly as did control mice. However, 
starting from 10  weeks of age, the β1,4-galactosyltransferase- 
I-deficient mice developed an IgAN-like disease associated with 
high serum IgA levels with greater portions of polymeric IgA. 
Histological examination of kidneys showed IgA deposition, 
expanded mesangial matrix, and electron-dense deposits in the 
paramesangial regions.

The model of BAFF-transgenic mice showed high serum IgA 
levels with increased portions of polymeric IgA and IgA deposi-
tion in the glomeruli but only in mice with microbiota (not in mice 
without microbiota) (135). This finding emphasized the role of 
microbiota in driving IgA responses in species/individuals with a 
specific genetic background. Another transgenic model includes 
mice producing IgA consisting of heavy chains of human IgA1 
with murine light chains. In mice with a transgene to produce the 
soluble fragment of human CD89, circulating IgA–CD89 com-
plexes form (253, 263). These transgenic mice develop mesangial 
IgA deposits, glomerular and interstitial macrophage infiltration, 
mesangial matrix expansion, hematuria, and mild proteinuria. 
However, follow-up studies have raised questions whether CD89 
is involved in a similar manner in human IgAN, as mice do not 
have a homolog of human CD89 (266, 267).

Passive Model
We have recently developed a passive mouse model of IgAN 
based on injection of SCID mice with preformed immune 

complexes consisting of human Gd-IgA1 bound by antiglycan 
antibodies (264, 265). These Gd-IgA1–IgG complexes deposit in 
the glomerular mesangium with murine C3 and induce mesan-
gial proliferation, hematuria, and proteinuria. This model further 
supports the key roles of aberrant O-glycosylation of IgA1 and the 
corresponding autoantibodies specific for these IgA1 glycoforms 
in formation of glomerular immunodeposits in IgAN.

FOUR-HiT MODeL OF igA NePHROPATHY 
PATHOGeNeSiS

Clinical and laboratory research during recent years has led to a 
widely accepted definition of IgAN as an autoimmune disease with 
a complex multistep, also called multi-hit, pathogenetic process 
(Figure 7) (173). Specifically, circulatory Gd-IgA1 in patients with 
IgAN (Hit 1) is recognized by autoantibodies of IgG and/or IgA 
isotype (Hit 2). Subsequently, IgA1–IgG and IgA1–IgA1 immune 
complexes are formed (Hit 3) that contain additional proteins, 
including components of complement system (200, 201). Some 
of these immune complexes ultimately deposit in the glomerular 
mesangium to activate mesangial cells and induce renal injury 
(Hit 4) (38, 61, 173). An alternative hypothesis has been proposed 
to suggest that aberrantly glycosylated IgA1 accumulates in the 
mesangium as lanthanic deposits that are later bound by newly 
appearing autoantibodies, resulting in the in  situ formation of 
immune complexes (268). The immune deposits stimulate the 
mesangial cells to proliferate and overproduce components of 
extracellular matrix, cytokines, and chemokines. Some of these 
cytokines may cause podocyte injury to induce proteinuria  
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FiGURe 7 | Multi-hit hypothesis for pathogenesis of igAN. Several 
processes are involved in development of IgAN. Circulatory Gd-IgA1 (Hit 1) is 
recognized by Gd-IgA1-specific autoantibodies (Hit 2) that leads to formation 
of pathogenic Gd-IgA1-containing circulating immune complexes (Hit 3). 
Some of these complexes reach the renal glomeruli to bind to mesangial cells 
and activate them, thereby inducing renal injury (Hit 4).
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(191, 269). Complement likely plays a role in the formation and 
activities of these complexes in the circulation as well as in those 
that may be formed in situ [for review, see Role of Complement 
in IgA Nephropathy above, and Refs (230) and (200)]. Moreover, 
some of the hits in the pathogenesis may be modulated or con-
trolled by various environmental and genetic factors [for review, 
see Ref. (270)].

Multiple other publications and findings lend credence to the 
multi-hit hypothesis on the pathogenesis of IgAN. For example, 
serum levels of Gd-IgA1 may predict disease progression (32), 
and serum levels of IgG and/or IgA autoantibodies specific for 
Gd-IgA1 correlate to disease severity and may also predict dis-
ease progression (182, 271). Moreover, serum levels of Gd-IgA1, 
IgG autoantibodies, and IgA1–IgG immune complexes predict 
disease recurrence in renal allografts (272).

Progress in the clinical and laboratory studies of IgAN has 
fueled a paradigm-shifting hypothesis on the autoimmune nature 
of the disease and identified some of the associated genetic factors 
(270). The multi-hit hypothesis not only describes the pathoge-
netic steps of IgAN but also serves as a “blueprint” for identifying 
targets of future disease-specific therapy and developing key 
biomarkers of the disease.

BiOMARKeRS OF igA NePHROPATHY

Clinical and laboratory studies in the last several years have 
identified several potential biomarkers for IgAN. It is hoped that 
some of these candidate markers can be developed into clinical 
assays to aid in the diagnosis, prognosis, patient stratification, 
monitoring of disease progression, and assessment of responses 
to treatment. Below, we briefly outline some of the candidate 
markers and also mention prospects for the development of 
disease-specific therapy.

Genetic/Genomic Biomarkers
Involvement of genetic factors in IgAN was first recognized 
through the discovery of familial forms of the disease (273). 
Specific loci and genes were later identified through linkage 
studies and GWAS [for review, see Ref. (274)]. Multiple suscep-
tibility alleles have been identified by GWAS in cohorts from 
Europe, North America, and East Asia (179, 275–277). Disease 
susceptibility is affected by common variations in genes involved 
in antigen processing and presentation as well as in the mucosal 
defense system and alternative complement pathway. These find-
ings further support an autoimmune nature of IgAN. GWAS data 
revealed that common genetic variants influence the risk of IgAN 
and suggest a multilocus adaptation process, possibly related to 
the variation in local pathogens across world populations (179). 
Moreover, serum levels of Gd-IgA1, the key autoantigen in IgAN, 
are genetically codetermined (152). Multiple risk and protective 
alleles among these disease-associated genes have been uncov-
ered, and the cumulative number of risk alleles has been linked 
to the age of disease onset (179). However, additional genomic 
studies are needed to better define major genetic factors and 
their variants and to enable development of future individualized 
genetic/genomic approaches.

Serum Biomarkers
A better understanding of the causes of IgAN through combined 
clinical, biochemical, and molecular studies will identify candi-
dates for developing disease-specific biochemical biomarkers. 
Candidate biomarkers include serum levels and/or specific char-
acteristics of the autoantigen (Gd-IgA1), levels of autoantibodies 
specific for Gd-IgA1, and levels and/or specific characteristics 
of immune complexes consisting of IgG autoantibody bound to 
Gd-IgA1 (181, 272, 278) (Table 2). These biomarkers, whether 
used individually or in combination as panels, may have diag-
nostic and/or prognostic significance and would support future 
testing of disease-specific therapeutic approaches.

Urinary Biomarkers
IgAN is diagnosed based on evaluation of a renal biopsy speci-
men. Laboratory screening for the possible presence of the disease 
include assessment of proteinuria and hematuria. These measure-
ments are not disease-specific and, thus, there have been numerous 
efforts to identify urinary markers specific for IgAN (279–281). 
For example, urinary concentrations of several cytokines related 
to cellular proliferation were evaluated as potential markers 
of histopathologic glomerular and tubulointerstitial changes. 
Urinary IL-6 levels were elevated in patients with glomerulone-
phritis; however, the results did not define the type of primary 
glomerulonephritis (282). Nonetheless, urinary excretion of 
IL-6 predicted long-term renal outcome in patients with IgAN 
(283), and excretion of IL-6 and epidermal growth factor (EGF) 
has been correlated with degree of tubulointerstitial damage that 
itself predicts a poor long-term outcome (3, 4). Based on these 
results, the ratio of urinary IL-6/EGF was proposed as a prognos-
tic marker for the progression of renal damage (284). In addition, 
urinary levels of monocyte chemotactic peptide-1 (MCP-1) and 
IL-8 correlated to tubulointerstitial damage (285, 286). However, 
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TABLe 2 | Candidate biomarkers and disease-specific approaches for treatment of igAN.

Pathogenic step Candidate biomarkers Potential approaches and targets of disease-specific therapy

Elevated production of  
Gd-IgA1

Serum level of Gd-IgA1 (lectin or antibody ELISA) Reduce production of Gd-IgA1
IgA1 hinge-region O-glycopeptide profiles (mass 
spectrometric analysis)

Manipulate enzyme expression in IgA1-producing cells
Reduce number of cells secreting Gd-IgA1

Production of 
autoantibodies specific 
for Gd-IgA1

Serum levels of autoantibodies (IgG and IgA) specific for 
Gd-IgA1

Reduce production of autoantibodies specific for Gd-IgA1
Deplete cells producing the autoantibody
Manipulate affinity maturation of autoantibodies to reduce affinity for the 
autoantigen
Remove the autoantibodies from circulation

Formation of pathogenic 
IgA1-containing immune 
complexes

Circulating IgA-containing immune complexes
Specific components of circulating immune complexes

Block immune complex formation and enhance their removal from circulation 
and catabolism
Block epitopes of autoantigen (Gd-IgA1) by non-crosslinking antibodies
Block autoantibodies by an epitope-containing glycopeptide or glycomimetic
Block activation of complement

Glomerular deposition 
and injury

Complement components and their degradation products Block activation of mesangial cells
Reduce complement activation in situ
Block binding of IgA1-containing immune complexes to mesangial cells
Block mesangial-cell signaling induced by IgA1-containing immune complexes

Novel markers of glomerular injury
Urinary immune complexes
Urinary peptidomic profiles
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cytokine/chemokine excretion again did not distinguish the 
specific types of glomerulonephritis. Other potential markers 
that have been evaluated include urinary α-1 antitrypsin in the 
α-1-globulin fraction (287) and urinary heparan sulfate (288), 
both of which were significantly higher in patients with IgAN. 
Urinary IgA concentrations are higher in patients with IgAN than 
in healthy individuals or in patients with other renal diseases and 
correlate with proteinuria (289). Immune complexes consisting 
of Gd-IgA1 and IgG were detected in the urine of patients with 
IgAN (290), but the prognostic value has not been defined. In 
contrast, excretion of the membrane attack complex was elevated 
in patients with membranous nephropathy (291) but not in 
patients with IgAN (292). Another study showed a correlation 
between glomerular filtration rate, urinary immunoglobulin 
excretion, and pathological grading of renal biopsies in patients 
with HSP with nephritis (293).

In addition to intact proteins, urine contains naturally occur-
ring fragments (peptides) derived from serum and renal tubular 
or glomerular proteins (280, 294–301). Analysis of urinary 
peptides may offer an opportunity to develop a non-invasive 
and unbiased diagnostic tool without a priori assumptions as to 
the pathogenesis of disease (281, 300–305). Initial studies using 
urinary peptidomic techniques indicated the potential to differ-
entiate patients with IgAN from patients with other glomerular 
diseases (302, 306).

Although many reports on urinary proteins and peptides 
demonstrated differential amounts of some proteins and protein 
complexes as well as peptides in the urine of patients with IgAN, 
none of the tests has been used in a routine clinical laboratory. It 
is hoped, however, that future studies will provide markers useful 
both for diagnosis and therapeutic monitoring of this disease 
(281, 296, 300, 301, 307).

TReATMeNT

As outlined in the previous sections, Gd-IgA1-containing 
immune complexes are considered to be a critical factor in 

the pathogenesis of IgAN. Theoretically, any intervention that 
would reduce production of Gd-IgA1 or autoantibodies spe-
cific for Gd-IgA1, block formation of the IgA1–IgG complexes, 
or otherwise reduce levels of pathogenic immune complexes 
would constitute effective disease-specific treatment. Similarly, 
any approach that would block activation of mesangial cells 
by the pathogenic IgA1–IgG complexes would be desirable. 
Examples of such approaches are listed in Table 2, and more 
details can be found in recent reviews (6, 180, 308). It is hoped 
that studies that discover the molecular defects of IgA1, the 
mechanisms of induction of the autoantibodies specific for 
Gd-IgA1, the composition and biological activities of the 
immune complexes, and the signaling pathways for activation 
of mesangial cells and glomerular injury will lead to disease-
specific therapy.

CONCLUSiON

Accumulated knowledge indicates that IgAN, the most com-
mon primary glomerulonephritis in the world, is an autoim-
mune disease driven by formation and glomerular deposition 
of IgA1-containing immune complexes. Currently, there is no 
disease-specific therapy, and many patients with IgAN progress 
to end-stage renal disease. The diagnosis of IgAN is established 
by determination of IgA as the dominant or codominant 
immunoglobulin in glomeruli. The IgA in glomerular deposits 
is exclusively of the IgA1 subclass and is enriched for glyco-
forms deficient in galactose on the hinge-region O-glycans. 
Multiple studies led to a hypothesis for a multi-hit pathogenetic 
process with contributing genetic and environmental compo-
nents. In this process, circulatory Gd-IgA1 is recognized as 
an autoantigen by IgG or IgA autoantibodies, resulting in the 
formation of immune complexes. Some of these circulating 
complexes deposit in glomeruli, activate mesangial cells, and 
induce glomerular injury through cellular proliferation and 
overproduction of components of extracellular matrix and 
cytokines/chemokines. Glycosylation pathways associated with 
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production of the autoantigen and the unique characteristics of 
the corresponding autoantibodies in patients with IgAN leading 
to the formation of pathogenic immune complexes have been 
uncovered, and genetic factors associated with IgAN have been 
identified. Complement plays a significant role in the forma-
tion and nephritogenic activities of these complexes; comple-
ment activation likely occurs systemically on IgA1-containing 
circulating immune complexes as well as locally in glomeruli. 
Multiple new models and approaches have been developed that 
will lead to a better understanding of the molecular mechanisms 
and factors involved in formation and activities of pathogenic 
IgA1-containing immune complexes. It is hoped that the ongo-
ing and future studies will enable development of much needed 
disease-specific therapy (308).
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