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Heterogeneity of Aberrant O-Glycosylation

of IgA1 in IgA Nephropathy
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Abstract IgA nephropathy (IgAN), a frequent cause of end-stage renal disease, is

an autoimmune disease wherein immune complexes consisting of IgA1 with

galactose-deficient O-glycans (Gd-IgA1; autoantigen) and anti-glycan autoanti-

bodies deposit in the glomeruli and induce renal injury. Serum IgA1 has three to

six clustered O-glycans, some of which may be deficient in galactose and thus

expose terminal or sialylated N-acetylgalactosamine. Patients with IgAN usually

have elevated serum levels of Gd-IgA1. The mechanisms involved in production of

Gd-IgA1 are not fully understood.

Using IgA1-producing cell lines, we have analyzed the heterogeneity of IgA1

O-glycosylation and the corresponding biosynthetic pathways. IgA1 secreted by
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cells from IgAN patients vs. healthy controls had more galactose-deficient sites and

overall more O-glycans. These changes were associated with differential expres-

sion/activity of key glycosyltransferases in cells from patients with IgAN

vs. controls, elevated for an initiating enzyme N-acetylgalactosaminyl (GalNAc)-

transferase 14 and for GalNAc-specific sialyltransferase (ST6GalNAc-II) and,

conversely, decreased for the galactosyltransferase (C1GalT1) and C1GalT1-

associated chaperone Cosmc. Involvement of the key enzymes in the production

of Gd-IgA1 was confirmed by siRNA knockdown and biochemical approaches.

Moreover, expression of these enzymes is affected by some cytokines that further

enhance the enzyme imbalance to increase Gd-IgA1 production.

In summary, the production of Gd-IgA1, the key autoantigen in IgAN, by IgA1-

secreting cells results from dysregulation of key glycosyltransferases and is aug-

mented by certain cytokines. These findings provide insight into possible

approaches for future disease-specific therapy.

Keywords IgA1 • O-glycosylation • Galactose deficiency • Autoantigen

4.1 Introduction

IgA nephropathy (IgAN) was described for the first time by Berger and Hinglais in

1968 based on the observation of “intercapillary deposits of IgA-IgG” using

fluorochrome-conjugated antibodies for immunofluorescence examination of

renal biopsy specimens from patients with recurrent hematuria [1]. IgAN was

later recognized as the most common glomerulonephritis worldwide [2, 3] and an

important cause of end-stage kidney disease [4]. The disease incidence varies

greatly by geographical location [5]. For example, IgAN is found in up to 40 %

of native-kidney biopsies in eastern Asia but in less than 5 % of such biopsies in

central Africa [5–9]. Some of this variability may be due to local differences with

regard to which patients are selected to undergo renal biopsy, but genetically

determined influences on the pathogenesis of the disease are thought to play a

significant role in disease incidence [8, 10–12].

4.1.1 Clinical Presentation and Diagnosis

IgAN is commonly manifested in adolescents and young adults. Asymptomatic

proteinuria and hematuria are common clinical presentations [13]. Painless macro-

scopic hematuria is frequent in children and adolescents and often coincides with

mucosal infections, particularly those of the upper respiratory tract and/or digestive

system. IgAN more commonly affects males than females (2–3:1) in Caucasians

but affects both genders equally in eastern Asia. This disease is diagnosed based on

pathological evaluation of renal biopsy specimens, with the typical feature of
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glomerular immunodeposits containing predominant or codominant IgA1

[14]. These IgA1 deposits are enriched for molecules with some galactose-deficient

O-glycans [15, 16]. Light microscopy typically shows mesangial proliferation and

expansion of extracellular matrix [14]. Glomerular sclerosis and interstitial fibrosis

are associated with progressive disease that leads to renal insufficiency. Several

different histopathologic classification schemes have been developed, including the

Haas, Lee, and Oxford classification systems (for details, see [5, 17–21]). Notably,

there is no disease-specific treatment for IgAN [5, 22].

4.1.2 Pathogenesis of IgA Nephropathy

Research during the past 15 years has defined IgAN as an autoimmune disease with

a postulated multi-hit mechanism [23] (Fig. 4.1). Molecules of IgA1 with some O-
glycans deficient in galactose (galactose-deficient IgA1; Gd-IgA1) are produced in

amounts sufficient to increase their blood levels (hit 1). These molecules are

recognized by unique circulating anti-glycan autoantibodies (hit 2). This process

leads to formation of immune complexes (hit 3), some of which reach the

Galactose-deficient IgA1 
(Gd-IgA1)

Pathogenic Gd-IgA1-containing 
circulating immune complexes

Autoantibodies specific 
for Gg-IgA1

Hit #4

Hit #2

Hit #3

Hit #1

Glomerular deposition 
and injury

(cellular proliferation, matrix 
expansion)

Altered mucosal immunityFig. 4.1 A proposed multi-

hit pathogenesis of IgAN.
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formation of pathogenic

immune complexes (hit 3),
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and induce renal injury (hit

4). Moreover, there are

likely upstream factors

involved in abnormal

mucosal immune responses

characteristic for patients

with IgAN

4 Heterogeneity of Aberrant O-Glycosylation of IgA1 in IgA Nephropathy 55

jannovak@uab.edu



glomerular circulation and deposit in the mesangium and induce renal injury (hit 4).

It is to be noted that activation of mesangial cells in vitro by Gd-IgA1 requires that

the molecule be contained in an immune complex; uncomplexed Gd-IgA1 does not

stimulate proliferation of mesangial cells [23–32]. The basis for the accentuated

synthesis of Gd-IgA1 remains uncertain, but abnormalities in mucosal immunity

have been implicated [33–36].

4.2 Structure of IgA1

Monomeric human IgA1 has two heavy chains and two light chains connected by

disulfidic bridges [37]. Each heavy chain has three constant (Cα) domains and one

variable (V) domain; each light chain has one C and one V domain (Fig. 4.2a).

Unlike IgA2, the other IgA subclass in humans, IgA1 has a unique hinge region

between Cα1 and Cα2 that consists of two octapeptide repeats (TPPTPSPS) and is

the site of attachment ofO-glycans [38]. On circulatory IgA1, usually three to six of
the nine potential O-glycosylation sites are glycosylated (Fig. 4.2a) [39–42]. There

are also two N-glycosylation sites on each heavy chain containing complex glycans

[43–47]. Monomers of IgA1 can be covalently associated during their production in

plasma cells with a ~15-kDa J-chain [48–50] and thus the immunoglobulin can be

present as dimers and higher oligomers, termed polymeric IgA1. In the circulation,

most of IgA1 is monomeric [51, 52].

O-glycans of serum IgA1 of healthy individuals are usually core 1 glycans, i.e.,

disaccharides consisting of Ser/Thr-linked N-acetylgalactosamine with a β1,3-
linked galactose (Fig. 4.2b). The disaccharide may be sialylated on either sugar

or on both sugars [45, 53]. Sialic acid (in humans, N-acetylneuraminic acid) is

attached to N-acetylgalactosamine of IgA1 by an alpha2,6-linkage and to galactose

by an alpha2,3-linkage. Lectins (proteins that bind to particular carbohydrates)

serve as useful tools to determine presence of terminal N-acetylgalactosamine or

the disaccharide consisting of N-acetylgalactosamine with β1,3-linked galactose

(Fig. 4.2b), but careful assessment of lectin specificities should always be

performed using well-characterized IgA proteins [40–42, 54–57].

4.3 Biosynthesis of IgA1 O-Glycans

O-glycosylation of IgA1 is a stepwise process beginning with attachment of

N-acetylgalactosamine to Ser/Thr residues of the hinge region; it is mediated by

N-acetylgalactosaminyl-transferase 2 (GalNAc-T2) [58, 59], but other GalNAc-Ts,

including GalNAc-T1, GalNAc-T11, and GalNAc-T14, may contribute to the

process [60, 61]. The O-glycan chain can be then extended by attachment of

galactose to the N-acetylgalactosamine residue (Fig. 4.3); this process is mediated

by core 1 beta1,3-galactosyltransferase (C1GalT1) [62]. The stability of this
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Fig. 4.2 Structure and O-glycosylation of human circulatory IgA1. (a) Modeled structure of

glycosylated monomeric IgA1 based on PDB ID: 1IGA (top) and hinge-region amino-acid

sequence with attachment sites of six O-glycans [125]. Modeled O- and N- glycans are depicted
as spheres for clarity and are based on observed glycoforms: red for Gal-GalNAc; orange for

GalNAc; and magenta for N-glycan (NeuAc)2(Gal)2(GlcNAc)2þ(Fuc)1(Man)3(GlcNAc)2
[40, 46]. Hinge-region non-glycosylated amino-acid residues are in blue. There are up to six

sites of O-glycosylation in the IgA1 hinge region – at T225, T228, S230, S232, T233, and T236

(marked by stars) [40]. (b) O-glycans of circulatory IgA1 and their lectin reactivities. Core

1 glycans consists of N-acetylgalactosamine and galactose, with or without sialic acid. Lectin

from Helix aspersa recognizes terminal N-acetylgalactosamine whereas jacalin binds to the

disaccharide composed of N-acetylgalactosamine and galactose
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enzyme during biosynthesis depends on interaction with its chaperone (Cosmc) for

assistance with protein folding. Without this association with Cosmc, the C1GalT1

nascent protein is rapidly degraded [63–65]. The core 1 structures of IgA1 may be

further modified by sialyltransferases that attach sialic acid to the galactose residues

(mediated by an ST3Gal enzyme) and/or N-acetylgalactosamine residues (mediated

by ST6GalNAc-II, as the usual ST6GalNAc-I is not expressed in IgA-producing

cells) [61, 66, 67].

4.4 Aberrant Glycosylation of IgA1 in IgA Nephropathy

Serum IgA1 of healthy individuals had been thought to contain few or no galactose-

deficient O-glycans [45], but it has been shown that galactose-deficient O-glycans
may be present at some sites in the IgA1 hinge region [40]. Glycosylation studies

have revealed aberrancies in the O-glycans of IgA1 in the circulation of patients

with IgAN. Specifically, most patients with IgAN have elevated serum levels of

IgA1 with some O-glycans deficient in galactose [68–73]. Thus, a fraction of

circulatory IgA1 molecules has some hinge-region O-glycans without galactose,

i.e., consisting of terminal N-acetylgalactosamine or sialylated N-acetylgalac-
tosamine (Fig. 4.2). This galactosylation defect appears to be specific for IgA1, as

other O-glycosylated serum proteins such as C1 inhibitor and IgD do not exhibit

galactose deficiency [40, 41, 56, 57, 74].

GalNAc-Ts

ST6GalNAc-II

C1GalT1

Cosmc

ST6GalNAc-II

ST3Gal

Ser/Thr 

2,6 

Ser/Thr 

1,3 

Ser/Thr Ser/Thr 

Ser/Thr 

Fig. 4.3 Biosynthesis of O-glycans of IgA1. O-glycans are synthesized in a stepwise manner,

starting with attachment of N-acetylgalactosamine to an oxygen molecule of serine or threonine

(catalyzed by GalNAc-transferases), followed by addition of galactose (catalyzed by C1GalT1).

Sialic acid can be added to each glycan by different enzymes, ST3Gal for attachment to galactose

or ST6GalNAC-II for attachment to GalNAc. Sialylation of GalNAc prevents subsequent addition

of galactose
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4.4.1 Synthesis of IgA and Possible Origin of Gd-IgA1

Humans produce approximately 70 mg of IgA per kg of body weight daily

[75]. Most IgA is produced in mucosal tissues, e.g., in the gut, as polymeric IgA

that is then selectively transported by a receptor-mediated pathway into the external

secretions (secretory IgA); only a small percentage of polymeric IgA enters the

circulation [52, 76, 77]. IgA in the circulation, predominantly of IgA1 subclass, is

produced mainly in the bone marrow and to a lesser extent in the spleen and lymph

nodes. A contribution of tonsillar IgA-producing cells to serum IgA has been

considered to play a role in pathogenesis of IgAN [33, 34, 78–83]. IgA is rapidly

catabolized; the half-life of IgA in the circulation is about 5 days. Circulatory IgA is

catabolized predominantly in the liver by hepatocytes [84–92].

Genetic influences on development and expression of IgAN have been recog-

nized and risk alleles of multiple genomic loci have been recently identified (for

review, see [5, 7, 9, 93, 94]). Notably, serum levels of Gd-IgA1 are genetically

determined and may be predictive of disease progression [95–98]. Thus, it is

clinically relevant to determine the nature of aberrant O-glycosylation of IgA1 in

IgAN at a molecular level.

Assessment of IgA1 O-glycosylation in general and in IgAN in particular

initially utilized O-glycan-specific lectins and monosaccharide compositional anal-

ysis [15, 68–70, 72, 99, 100]. Lectin-based assays, using carefully selected lectins

specific for particular sugars [54], evolved into a quantitative lectin ELISA

[71]. This unique test has been used for analyses of serum IgA1 from multiple

cohorts and the accumulated data show that most adult and pediatric patients with

IgAN have elevated serum levels of Gd-IgA1 [54, 71, 73, 98, 101–105]. Moreover,

the lectin-based assay was instrumental in establishing that serum levels of

Gd-IgA1 are heritable in familial as well as sporadic IgAN [95].

To characterize O-glycosylation of IgA1 at a molecular level, mass spectromet-

ric analyses have been used in addition to monosaccharide compositional analyses

[16, 55, 69, 72, 106–111]. Importantly, a new approach for direct localization of

O-glycan attachment sites on IgA1 has been developed by combining a technique to

fragment hinge-region glycopeptides (electron-capture or electron-transfer dissoci-

ation) with high-resolution mass spectrometry, a process termed tandem mass

spectrometry [40–42, 56, 57, 112]. In this approach, the individual glycoforms

are identified by their molecular masses and the sites of O-glycan attachment are

determined by fragmentation. These protocols revealed O-glycoform isomers, i.e.,

hinge-region glycopeptides with the same number of glycans but with some

attached at different sites [40, 113–116]. It remains to be determined whether this

microheterogeneity affects the expression or prognosis of IgAN.
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4.5 Studies with IgA1-Producing Cells

Development of immortalized IgA1-secreting cells derived from cells in the circu-

lation of patients with IgAN and healthy and disease controls provided a new tool

for studies of normal and aberrant O-glycosylation of IgA1 [103]. IgA1 secreted by
the cells from patients with IgAN had higher degrees of galactose deficiency of the

O-glycans than that from cells of healthy controls. Notably, the relative degree of

galactose deficiency of the IgA1 secreted by IgA1-producing cells correlates with

that of serum IgA1 from the corresponding donor [103]. Thus, these cells served as

an excellent model system to study enzymatic pathways and the actual O-glyco-
sylation of secreted IgA1. Initial studies showed that the polymeric IgA1 form is the

most affected by galactose deficiency. Furthermore, this phenotype is related to

decreased expression and activity of C1GalT1 and elevated expression and activity

of ST6GalNAc-II [103]. Moreover, the expression of C1GalT1-specific chaperone

Cosmc [63, 64], that is necessary for stability of the nascent C1GalT1 protein, is

decreased [103]. More recently, the roles of C1GalT1 and ST6GalNAc-II in

production of Gd-IgA1 have been confirmed, using siRNA knockdown and bio-

chemical approaches [67, 117, 118].

IgA1 secreted by our established cell lines was isolated and its O-glycosylation
characterized by using high-resolution mass spectrometry. The IgA1 secreted by

cells from patients with IgAN has more galactose-deficientO-glycans, consisting of
terminal or sialylated N-acetylgalactosamine, compared to IgA1 from the cells from

healthy controls [119]. Moreover, IgA1 from patients with IgAN also had more

O-glycans per heavy chain. Together, these data revealed another type of glyco-

sylation abnormality, an elevated number of O-glycans on IgA1 from patients with

IgAN. This finding implicated a central role for an O-glycosylation-initiating
enzyme, a GalNAc-T, in production of Gd-IgA1.

Several GalNAc-Ts are abundantly expressed in IgA1-producing cells [61, 120],

including GalNAc-T2 [103]. Of this family of enzymes, only GalNAc-T14, the

closest structural relative of GalNAc-T2, was expressed at several-fold greater

levels in the cells from patients with IgAN compared to cells from healthy controls

[120]. Conversely, the expression of GalNAc-T2 and other GalNAc-Ts did not

differ between patients and healthy controls [103]. These findings thus indicate that

overexpression of GalNAc-T14 may contribute to enhanced O-glycosylation of

IgA1 in IgAN [9, 61].

Notably, the dysregulated expression and activities of several key glycosyl-

transferases are further enhanced by some cytokines, including IL-6 [117]. The

signaling process through the IL-6 receptor/gp130 complex is mediated by STAT3

[121, 122] and increases activity of ST6GalNAc-II and decreases activity of

C1GalT1 (Fig. 4.4) [117]. This process leads to greater production of Gd-IgA1

[117]. Another type of signal involved in cellular differentiation and survival that

may be relevant to Gd-IgA1-producing cells includes B-cell activating factor

(BAFF) [122]. Notably, overexpression of human BAFF in mice leads to

overproduction of IgA and development of IgA glomerular deposits [123].
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These observations may together explain why the clinical onset or a flare in the

activity of IgAN often coincides with an active mucosal infection of the upper

respiratory tract and/or digestive system. It can be speculated that such environ-

mental factors exert their activity through cytokines (e.g., IL-6) and growth factors

(e.g., BAFF, APRIL) (Fig. 4.4) to upregulate cellular production of Gd-IgA1 and/or

cell survival in susceptible individuals [9, 94, 122].

4.6 Summary and Implications for Diagnosis, Prognosis,

and Treatment of IgA Nephropathy

Multiple lines of evidence allow us to characterize IgAN as an autoimmune disease

in which Gd-IgA1, produced in increased amounts and leading to increased levels

in the blood, is bound by unique autoantibodies. This sequence of events leads to

formation of pathogenic circulating Gd-IgA1-containing immune complexes. Some

of these complexes deposit in the kidney and induce a mesangioproliferative

glomerular injury [124]. Elevated serum levels of Gd-IgA1 are genetically

codetermined and can be further increased by some cytokines. Moreover, serum

levels of Gd-IgA1 may be predictive of disease progression. Gd-IgA1 is produced

by IgA1-secreting cells of patients with IgAN due to dysregulation of several key

glycosylation enzymes. A combination of approaches with use of IgA1-producing

cell lines and high-resolution mass spectrometry will likely provide a better under-

standing at cellular and molecular levels of the heterogeneity of Gd-IgA1 in

patients with IgAN. We believe that through a detailed understanding of the disease
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processes, biomarkers specific for IgAN can be identified and developed into

clinical assays to aid in the diagnosis, assessment of prognosis, and monitoring of

the disease progression. Moreover, characterization of specific pathogenetic path-

ways, such as those involved in Gd-IgA1 production, will identify targets for future

disease-specific therapies.
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